No-three-in-line problem on a torus: periodicity

Michael Skotnica

Oct 24. 2019

Basic definitions

- Discrete torus $T_{m \times n}$ of size $m \times n$ is a set $\{0, \ldots, m-1\} \times\{0, \ldots, n-1\} \subset \mathbb{Z}^{2}$.
- Line on $T_{m \times n}$ is an image of a line in \mathbb{Z}^{2} under a mapping which maps a point $(x, y) \in \mathbb{Z}^{2}$ to the point $(x \bmod m, y \bmod n)$.
- Line in $\mathbb{Z}^{2}\left\{\left(b_{1}, b_{2}\right)+k\left(v_{1}, v_{2}\right) ; k \in \mathbb{Z}\right\}$, where $\operatorname{gcd}\left(v_{1}, v_{2}\right)=1$.

Notions

- $\tau_{m, n}$ denotes the maximal number of points which can be placed on the discrete torus of sizes $m \times n$ so that no three of these points are collinear.
- σ_{z} is a sequence which we obtain by fixing one of the coordinates of a torus. In other words $\sigma_{z}(x):=\tau_{z, x}$.
- $\pi_{m, n}$ denotes the mapping which maps a point $(x, y) \in \mathbb{Z}^{2}$ to the point $(x \bmod m, y \bmod n)$.

Main results

Theorem 1. The sequence σ_{z} is periodic for all positive integers z greater than 1 .
When z is a power of a prime we can say more:
Theorem 2. Let $T_{p^{a} \times p^{(a-1) p+2}}$ be a torus where p is a prime and $a \in \mathbb{N}$. Then $\tau_{p^{a}, p^{(a-1) p+2}}=2 p^{a}$.
Theorem 3. Let p be a prime, $a \in \mathbb{N}$. Let us denote $m:=\min \left\{x ; \sigma_{p^{a}}(x)=2 p^{a}\right\}$. Then $m=p^{b}$ for some $b \geq a$ and the sequence $\sigma_{p^{a}}$ is periodic with the period m.

Tools

Theorem 4 (Chinese Remainder Theorem). Let m, n be positive integers. Then two simultaneous congruences

$$
\begin{array}{ll}
x \equiv a & (\bmod m), \\
x \equiv b \quad & (\bmod n)
\end{array}
$$

are solvable if and only if $a \equiv b(\bmod \operatorname{gcd}(m, n))$. Moreover, the solution is unique modulo $\operatorname{lcm}(m, n)$, where 1 cm denotes the least common multiple.

Theorem 5 (Dirichlet's Theorem). Let a, b be positive relatively prime integers. Then there are infinitely many primes of the form $a+n b$, where n is a non-negative integer.

Theorem 6 (Langrange's Theorem). Let G be a group and H its subgroup. Then $|G|=[G: H] \cdot|H|$.
Theorem 7. Let $m, n \in \mathbb{N}$. Then $\tau_{m, n} \leq 2 \operatorname{gcd}(m, n)$.
Lemma 8. Let m, n, x, y be positive integers. Then $\tau_{m, n} \leq \tau_{x m, y n}$.
Lemma 9. Let m, n, x, y be positive integers such that m, n are not both 1 and $\operatorname{gcd}(x, y)=\operatorname{gcd}(m, y)=$ $\operatorname{gcd}(n, x)=1$. Then $\tau_{m, n}=\tau_{x m, y n}$.
Lemma 10. Let $z \in \mathbb{N}$ and $z=\prod_{i \in I} p_{i}^{a_{i}}$ be its prime factorization. There exists $m_{z}=\prod_{i \in I} p_{i}^{b}$, where $b \geq a_{i}$ for each $i \in I$ which satisfies the following condition.

$$
\forall J \subseteq I: \sigma_{z}\left(\prod_{i \in \bar{J}} p_{i}^{b} \prod_{i \in J} p_{i}^{c_{i}}\right)=\sigma_{z}\left(\prod_{i \in \bar{J}} p_{i}^{d_{i}} \prod_{i \in J} p_{i}^{c_{i}}\right)
$$

for arbitrary $0 \leq c_{i}<b, d_{i} \geq b$ and where $\bar{J}:=I \backslash J$.

Other known results

- $\tau_{p, p}=p+1$.
- $\tau_{2^{a}, 2^{2 a-1}}=2^{a+1}$.
- $\tau_{p^{a}, p^{a}} \leq p^{a}+p^{\left\lceil\frac{a}{2}\right\rceil}+1$.

