Online Lower Bounds via Duality

Yossi Azar Ilan Reuven Cohen Alan Roytman

Theorem 1. There does not exist a deterministic fractional algorithm with a competitive ratio strictly better than e for the d-dimensional Vector Bin Packing problem, where d is arbitrarily large.

Theorem 2. There does not exist a randomized algorithm with a competitive ratio strictly better than e for the Capital Investment problem.

Theorem 3. There does not exist a randomized algorithm with a competitive ratio strictly better than $1-\left(1-\frac{1}{d}\right)^{d}$ for the d-bounded online Ad-auctions problem.

Multidimensional Vector Bin Packing

Existing algorithms: $(1+\epsilon) e$-competitive for small coordinates; e-competitive for splittable The primal linear program:
$v_{1}=(1,0,0, \ldots, 0), v_{2}=(1,2,0, \ldots, 0), v_{3}=(1,1,3, \ldots, 0), \ldots, v_{d}=(1,1,1, \ldots, d)$.
$x_{i, j}$ - the total fraction of vectors of type v_{i} assigned to bins opened in phase $j(i \geq j)$.
$c-\mathrm{a}$ variable representing the competitive ratio guarantee.

$$
\begin{array}{cll}
\min c & c, x_{i, j} \geq 0 & \forall i \geq j: i, j \in[d] \\
\text { s.t.: } \sum_{r=j}^{d} v_{r}(k) x_{r, j} \leq c & \text { constraint } z_{k, j} & \forall k, j \in[d] \\
\sum_{r=1}^{i} x_{i, r}=1 & \text { constraint } y_{i} & \forall i \in[d]
\end{array}
$$

The dual linear program:

$$
\begin{array}{lll}
\max & \sum_{r=1}^{d} y_{r} & z_{k, j} \geq 0 \\
\text { s.t.: } & \sum_{k=1}^{d} \sum_{j=1}^{d} z_{k, j} \leq 1 & \text { constraint } c \\
& & \\
y_{i} \leq i \cdot z_{i, j}+\sum_{r=j}^{i-1} z_{r, j} & \text { constraint } x_{i, j} & \forall i \geq j: k, j \in[d]
\end{array}
$$

Formal feasible dual variables assignment:

$$
y_{i}=\frac{1}{i}, \quad z_{k, j}= \begin{cases}\frac{1-\ln (k / j)}{k^{2}} & \text { if } j \leq k \leq\lfloor e \cdot j\rfloor, \\ 0 & \text { otherwise. }\end{cases}
$$

Online Capital Investment

Existing algorithms:

4-competitive deterministic algorithm (3.618 lower bound)
2.88-competitive randomized algorithm
e-competitive algorithm for slightly less general setting
Sequence definition: n machines where machine m_{i} has a capital cost of $i+1$ and a production cost of $2^{-i^{2}}$. Introduce $2^{k^{2}}-2^{(k-1)^{2}}$ orders for units in phase k (2 units in first), n phases in total

The primal linear program:

- $x_{k, i}$ - the fraction bought of the $i^{\text {th }}$ machine in the $k^{\text {th }}$ phase.
- $q_{k, i}$ - the fraction of products produced by the $i^{t h}$ machine in the $k^{t h}$ phase.
- c - a variable representing the competitive ratio guarantee.

$$
\begin{array}{lll}
\min c & c, x_{k, i}, q_{k, i} \geq 0 & \forall k, i \in[n] \\
\text { s.t.: } \sum_{r=1}^{k} x_{r, i} \geq q_{k, i} & \text { constraint } y_{k, i} & \forall k, i \in[n] \\
& & \text { constraint } w_{k} \\
\sum_{i=1}^{n} q_{k, i}=1 & \forall k \in[n] \\
& \sum_{r=1}^{k} \sum_{i=1}^{n}(i+1) \cdot x_{r, i}+2^{k^{2}} \sum_{i=1}^{n} 2^{-i^{2}} q_{k, i} \leq c \cdot(k+2) & \text { constraint } z_{k} \\
& & \forall k \in[n]
\end{array}
$$

The dual linear program:

$$
\begin{array}{lll}
\max & \sum_{k=1}^{n} w_{k} & y_{k, i}, z_{k} \geq 0 \\
\text { s.t.: } & \sum_{k=1}^{n}(k+2) \cdot z_{k} \leq 1 & \text { constraint } c
\end{array}
$$

Formal feasible dual variables assignment: Let ϵ be a small constant, the assignment is:

- $y_{k, i}=w_{k}$, for $k \leq i \leq n$ and 0 otherwise.
- $z_{k}=\frac{1}{k(k+1)}$, for all $k \leq n$.
- $w_{k}=e \cdot(1-\epsilon) \ln \left(\frac{k+1}{k}\right)$, for $k \leq n \cdot \epsilon$ and 0 otherwise.

