Optimal Separation and Strong Direct Sum for Randomized Query Complexity

Eric Blais, Joshua Brody

Model

- Function $f: \mathcal{X}^{n} \rightarrow\{0,1\}, \mathcal{X}$ is finite.
- Error parameter $\varepsilon \geq 0$.
- Query cost $|\mathcal{A}|$ of an algorithm \mathcal{A} is the maximum of coordinates of x queried by \mathcal{A}.

Randomized Complexity

- Randomized algorithm \mathcal{A} computes f with an error ε if for every $x \in \mathcal{X}$ holds that

$$
\operatorname{Pr}_{r}[\mathcal{A}(x)=f(x)] \geq 1-\varepsilon .
$$

- Query complexity $R_{\varepsilon}(f)$ of f is a query cost of the optimal algorithm which computes f with an error $\varepsilon ; R(f)=R_{1 / 3}(f)$.
- Average query complexity $\bar{R}_{\varepsilon}(f)$ of f is an average query cost of the optimal algorithm which computes f with an error $\varepsilon ; \bar{R}(f)=\bar{R}_{1 / 3}(f)$.

Distributional Complexity

- Distribution of input μ.
- Deterministic algorithm \mathcal{D} computes f with an error ε if

$$
\operatorname{Pr}_{\mu}[\mathcal{D}(x)=f(x)] \geq 1-\varepsilon
$$

- Distributional complexity $D_{\varepsilon}^{\mu}(f)$ is a query cost of the optimal deterministic algorithm which computes f with an error ε.

Aborting Algorithm

- Algorithms also can abort with probability δ.
- Measures $\bar{R}_{\delta, \varepsilon}(f), R_{\delta, \varepsilon}(f), D_{\delta, \varepsilon}^{\mu}(f)$ defined similarly, algorithms which can abort are also considered.

Results

Theorem 1 (Error Separation). For infinitely many values of n and every $2^{-\left(\frac{n}{\log n}\right)^{1 / 3}}<\varepsilon \leq \frac{1}{3}$, there exists a total function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ such that

$$
\bar{R}_{\varepsilon}(f) \geq \Omega\left(R(f) \cdot \log \frac{1}{\varepsilon}\right)
$$

Theorem 2 (Direct Sum). For every function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, every $k \geq 2$ and every $0 \leq \varepsilon \leq \frac{1}{20}$ holds that

$$
\bar{R}_{\varepsilon}\left(f^{k}\right) \geq \Omega\left(k \cdot \bar{R}_{\frac{\varepsilon}{k}}(f)\right)
$$

Direct Sum

Lemma 3. For every function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, every $0 \leq \varepsilon<\frac{1}{2}$ and every $0<\delta<1$ holds that

$$
\delta \cdot R_{\delta, \varepsilon}(f) \leq \bar{R}_{\varepsilon}(f) \leq \frac{1}{1-\delta} \cdot R_{\delta,(1-\delta) \varepsilon}(f)
$$

Lemma 4. For every function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ and any $\alpha, \beta>0$ such that $\alpha+\beta \leq 1$ holds that

$$
\max _{\mu} D_{\frac{\delta}{\alpha}, \frac{\varepsilon}{\beta}}^{\mu}(f) \leq R_{\delta, \varepsilon} \leq \max _{\mu} D_{\alpha \delta, \beta \varepsilon}^{\mu}(f)
$$

Lemma 5. For every function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, every distribution μ on $\{0,1\}^{n}$ and every $0 \leq \delta, \varepsilon \leq \frac{1}{4}$ holds that

$$
D_{\delta, \varepsilon}^{\mu}\left(f^{k}\right) \geq \Omega\left(k \cdot D_{\frac{1}{10}+4 \delta+4 \varepsilon, \frac{48 \varepsilon}{k}}^{\mu}(f)\right)
$$

Error Separation

Definition 6 (Joining Function). Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ and $g:\{0,1\}^{m} \rightarrow\{0,1\}$. We define a function $f \circ g:\{0,1\}^{n \times m} \rightarrow\{0,1\}$ as

$$
f \circ g\left(x_{1}, \ldots, x_{n}\right)=f\left(g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right)
$$

where $x_{i} \in\{0,1\}^{m}$.
Definition 7 (Resilient Function). A function $\phi:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ is t-resilient for some $1 \leq$ $t \leq n$ if for any set $S \subseteq[n]$ of $|S| \leq t$ of coordinates and any assignment of values for the inputs $\left\{x_{i}\right\}_{i \in S}$, when the values $\left\{x_{i}\right\}_{i \notin S}$ are set uniformly at random then $\phi(x)$ is uniformly distributed in $\{0,1\}^{m}$.
Theorem 8 (Chor et al.). For every large enough n, there is a function $\phi:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ that is $\frac{n}{3}$-resilient and satisfies $m \geq 0.08 n$.

Functions

- Ptr : $\Gamma^{n \times m} \rightarrow\{0,1\}, \Gamma=\{0,1\} \times([n] \cup\{\perp\})^{m} \times([m] \cup\{\perp\})$.

- GapZ $:\{0,1\}^{m} \rightarrow\{0,1\}$.

$$
\operatorname{GAPZ}(x)= \begin{cases}1 & |x|=0 \\ 0 & |x|=\frac{m}{2} \\ \text { undefined } & \text { otherwise }\end{cases}
$$

- BR : $\Sigma^{n \times m} \rightarrow\{0,1\}, \Sigma=\{$ Blue, Red, NotColored $\}, x \in \Sigma^{n \times m}$ is valid if each column has exactly 1 colored entry.

$$
\operatorname{BR}(x)= \begin{cases}1 & x \text { is valid and each colored entry is red } \\ 0 & x \text { is valid and exactly } \frac{m}{2} \text { colored entries are blue } \\ \text { undefined } & \text { otherwise }\end{cases}
$$

