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Model
e Function f: X" — {0,1}, X is finite.
e Error parameter € > 0.

e Query cost |A| of an algorithm A is the maximum of coordinates of z queried by .A.

Randomized Complexity

e Randomized algorithm A computes f with an error ¢ if for every x € X holds that

PrlA(@) = f(a)] = 1—e.

e Query complexity R.(f) of f is a query cost of the optimal algorithm which computes f
with an error &; R(f) = Ry/3(f).

e Average query complexity R, L f)of f 1s an average query cost of the optimal algorithm which
computes f with an error ; R(f) = R1/3(f).

Distributional Complexity
e Distribution of input pu.
e Deterministic algorithm D computes f with an error ¢ if

Pr(D(x) = f(a)] 2 1~ &,

e Distributional complexity D¥(f) is a query cost of the optimal deterministic algorithm which
computes f with an error e.

Aborting Algorithm
e Algorithms also can abort with probability §.

e Measures Rs.(f), Rs.c( f),D(’; .(f) defined similarly, algorithms which can abort are also
considered.

Results
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Theorem 1 (Error Separation). For infinitely many values of n and every 2~ (wem <e< %,

there exists a total function f:{0,1}" — {0,1} such that
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Ra(f) = Q(R(f) -log - )

Theorem 2 (Direct Sum). For every function f : {0,1}"™ — {0,1}, every k > 2 and every

0<e< 2—10 holds that

R.(fY) > (k- R: (f)).



Direct Sum

Lemma 3. For every function f: {0,1}" — {0,1}, every 0 < & < % and every 0 < 6 < 1 holds
that

5 Roolf) < Relf) < 12 - Rempelf).

Lemma 4. For every function f:{0,1}" — {0,1} and any «, 8 > 0 such that o+ 8 < 1 holds
that
max D _(f) < Rs < maXDgaﬁE(f)
I '
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Lemma 5. For every function f : {0,1}" — {0,1}, every distribution p on {0,1}™ and every
0<d,e< i holds that
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Error Separation
Definition 6 (Joining Function). Let f: {0,1}" — {0,1} and ¢ : {0,1}™ — {0,1}. We define a
function fog:{0,1}"*™ — {0,1} as
f © g(wla v ,J]n) = f(g(xl)a v 7g(xn))7
where z; € {0,1}™.

Definition 7 (Resilient Function). A function ¢ : {0,1}"™ — {0,1}™ is t-resilient for some 1 <
t < n if for any set S C [n] of |S| <t of coordinates and any assignment of values for the inputs
{z;}ics, when the values {z;}izs are set uniformly at random then ¢(z) is uniformly distributed
in {0,1}™.

Theorem 8 (Chor et al.). For every large enough n, there is a function ¢ : {0,1}"™ — {0,1}™
that is %-resilient and satisfies m > 0.08n.

Functions
o Prr:T"™*™ — {0,1},T = {0,1} x ([n]U{L})™ x (jm] U {L}).
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e GAPZ:{0,1}™ — {0,1}.
1 |z =0
GAPZ(z) =<0 lz| = &

undefined otherwise

e BR:YX"*™ — {0,1},X = {BLUE, RED, NOTCOLORED}, z € ¥™"*™ ig valid if each column
has exactly 1 colored entry.
1 x is valid and each colored entry is red
BR(z) =40 x is valid and exactly %' colored entries are blue

undefined otherwise



