Optimal Separation and Strong Direct Sum for Randomized Query Complexity

Eric Blais, Joshua Brody

Model

- Function $f: \mathcal{X}^n \to \{0, 1\}, \mathcal{X}$ is finite.
- Error parameter $\varepsilon \geq 0$.
- Query cost $|\mathcal{A}|$ of an algorithm \mathcal{A} is the maximum of coordinates of x queried by \mathcal{A} .

Randomized Complexity

• Randomized algorithm \mathcal{A} computes f with an error ε if for every $x \in \mathcal{X}$ holds that

$$\Pr[\mathcal{A}(x) = f(x)] \ge 1 - \varepsilon.$$

- Query complexity $R_{\varepsilon}(f)$ of f is a query cost of the optimal algorithm which computes f with an error ε ; $R(f) = R_{1/3}(f)$.
- Average query complexity $\overline{R}_{\varepsilon}(f)$ of f is an average query cost of the optimal algorithm which computes f with an error ε ; $\overline{R}(f) = \overline{R}_{1/3}(f)$.

Distributional Complexity

- Distribution of input μ .
- Deterministic algorithm \mathcal{D} computes f with an error ε if

$$\Pr_{\mu}[\mathcal{D}(x) = f(x)] \ge 1 - \varepsilon.$$

• Distributional complexity $D^{\mu}_{\varepsilon}(f)$ is a query cost of the optimal deterministic algorithm which computes f with an error ε .

Aborting Algorithm

- Algorithms also can abort with probability δ .
- Measures $\overline{R}_{\delta,\varepsilon}(f), R_{\delta,\varepsilon}(f), D^{\mu}_{\delta,\varepsilon}(f)$ defined similarly, algorithms which can abort are also considered.

Results

Theorem 1 (Error Separation). For infinitely many values of n and every $2^{-(\frac{n}{\log n})^{1/3}} < \varepsilon \leq \frac{1}{3}$, there exists a total function $f : \{0, 1\}^n \to \{0, 1\}$ such that

$$\overline{R}_{\varepsilon}(f) \ge \Omega\Big(R(f) \cdot \log \frac{1}{\varepsilon}\Big).$$

Theorem 2 (Direct Sum). For every function $f : \{0,1\}^n \to \{0,1\}$, every $k \ge 2$ and every $0 \le \varepsilon \le \frac{1}{20}$ holds that

$$\overline{R}_{\varepsilon}(f^k) \ge \Omega\left(k \cdot \overline{R}_{\frac{\varepsilon}{k}}(f)\right).$$

Direct Sum

Lemma 3. For every function $f : \{0,1\}^n \to \{0,1\}$, every $0 \le \varepsilon < \frac{1}{2}$ and every $0 < \delta < 1$ holds that

$$\delta \cdot R_{\delta,\varepsilon}(f) \leq \overline{R}_{\varepsilon}(f) \leq \frac{1}{1-\delta} \cdot R_{\delta,(1-\delta)\varepsilon}(f).$$

Lemma 4. For every function $f : \{0,1\}^n \to \{0,1\}$ and any $\alpha, \beta > 0$ such that $\alpha + \beta \leq 1$ holds that

$$\max_{\mu} D^{\mu}_{\frac{\delta}{\alpha},\frac{\varepsilon}{\beta}}(f) \le R_{\delta,\varepsilon} \le \max_{\mu} D^{\mu}_{\alpha\delta,\beta\varepsilon}(f)$$

Lemma 5. For every function $f : \{0,1\}^n \to \{0,1\}$, every distribution μ on $\{0,1\}^n$ and every $0 \le \delta, \varepsilon \le \frac{1}{4}$ holds that

$$D^{\mu}_{\delta,\varepsilon}(f^k) \ge \Omega\big(k \cdot D^{\mu}_{\frac{1}{10} + 4\delta + 4\varepsilon, \frac{48\varepsilon}{k}}(f)\big).$$

Error Separation

Definition 6 (Joining Function). Let $f : \{0,1\}^n \to \{0,1\}$ and $g : \{0,1\}^m \to \{0,1\}$. We define a function $f \circ g : \{0,1\}^{n \times m} \to \{0,1\}$ as

$$f \circ g(x_1, \ldots, x_n) = f(g(x_1), \ldots, g(x_n)),$$

where $x_i \in \{0, 1\}^m$.

Definition 7 (Resilient Function). A function $\phi : \{0,1\}^n \to \{0,1\}^m$ is *t*-resilient for some $1 \le t \le n$ if for any set $S \subseteq [n]$ of $|S| \le t$ of coordinates and any assignment of values for the inputs $\{x_i\}_{i \in S}$, when the values $\{x_i\}_{i \notin S}$ are set uniformly at random then $\phi(x)$ is uniformly distributed in $\{0,1\}^m$.

Theorem 8 (Chor et al.). For every large enough n, there is a function $\phi : \{0,1\}^n \to \{0,1\}^m$ that is $\frac{n}{3}$ -resilient and satisfies $m \ge 0.08n$.

Functions

• PTR: $\Gamma^{n \times m} \to \{0, 1\}, \Gamma = \{0, 1\} \times ([n] \cup \{\bot\})^m \times ([m] \cup \{\bot\}).$ $2 j^{*}$ j $1 \ 2 \ j^* \ j$ 1 \bot 1 \bot \bot 1 0 i^* i_4 \bot \bot \bot , i^* i_4 1 i_1 i_2 1 \bot \bot > j^* $Pr = \frac{1}{2}$ j \dot{m}

• GAPZ: $\{0,1\}^m \to \{0,1\}$.

$$GAPZ(x) = \begin{cases} 1 & |x| = 0\\ 0 & |x| = \frac{m}{2}\\ undefined & otherwise \end{cases}$$

• BR : $\Sigma^{n \times m} \to \{0, 1\}, \Sigma = \{BLUE, RED, NOTCOLORED\}, x \in \Sigma^{n \times m}$ is valid if each column has exactly 1 colored entry.

$$BR(x) = \begin{cases} 1 & x \text{ is valid and each colored entry is red} \\ 0 & x \text{ is valid and exactly } \frac{m}{2} \text{ colored entries are blue} \\ \text{undefined} & \text{otherwise} \end{cases}$$