Linear programming. Given a set H of n hyperplanes in \mathbb{R}^d , find a point p which lies on or below all hyperplanes in H, while minimizing a given linear objective function.

Basic definitions.

Definition 1. Given $p \in \mathbb{R}^d$, let Violate_p(H) = { $h \in H$; h is strictly below p}. A subset $R \subseteq H$ is an ε -net of H if for every $p \in \mathbb{R}^d$,

$$\operatorname{Violate}_p(R) = \emptyset \implies |\operatorname{Violate}_p(H)| \le \varepsilon |H|.$$

Definition 2. Let $\rho_p(H) = |\text{Violate}_p(H)| / |H|$. A subset $R \subseteq H$ is a sensitive ε -approximation of H with respect to $P \subseteq \mathbb{R}^d$, if for every $p \in P$,

$$|\rho_p(R) - \rho_p(H)| \le (\varepsilon/2)\sqrt{\rho_p(H)} + \varepsilon^2/2.$$

Main result. Deterministic algorithm for linear programming with running time:

- $\mathcal{O}(d^3 \log^c d)^d n$,
- $\mathcal{O}(d)^{(2+\mathcal{O}(\delta))d}n$ for any constant $\delta > 0$,
- $\mathcal{O}(d)^{d/2} (\log d)^{3d} n$ with n a power of 2.

Tools

Lemma 1.

- (a) (Mergeability) If R_i is an ε -net of H_i for each *i*, then $\bigcup_i R_i$ is an ε -net of $\bigcup_i H_i$.
- (b) Given a set H of $n \ge d$ hyperplanes in \mathbb{R}^d , we can construct an ε -net of H of size $\mathcal{O}(\frac{d}{\varepsilon}\log n)$ in $\mathcal{O}(n/d)^{d+\mathcal{O}(1)}$ deterministic time.

Fact 2. Define $\operatorname{Cap}(H, \alpha) = \{ p \in \mathbb{R}^d; \rho_p(H) \leq \alpha \}.$

- (a) (Mergeability) If R_i is a sensitive ε -approximation of H_i w.r.t P and the H_i have equal size, then $\bigcup_i R_i$ is a sensitive ε -approximation of H w.r.t. P.
- (b) (Reducibility) If R is a sensitive ε -approximation of H w.r.t. P and R' is a sensitive ε' -approximation of R w.r.t. P, then R' is a sensitive ($\varepsilon + 2\varepsilon'$) approximation of H w.r.t. P.
- (c) Given a set H of n hyperplanes in \mathbb{R}^d with $n \ge r \ge \frac{c_0 d}{\varepsilon^2} \log n$ for some constant c_0 , and given a parameter $t \ge 1$, we can construct a sensitive ε -approximation of H w.r.t. $\operatorname{Cap}(H, (t\varepsilon)^2)$ of size r in $\mathcal{O}(t\varepsilon n/d)^{d+\mathcal{O}(1)}$ deterministic time.

Lemma 3.

- (a) If R is a sensitive $\sqrt{\varepsilon}$ -approximation of H w.r.t. $\operatorname{Cap}(H, \varepsilon + \frac{1}{|H|})$, then R is an ε -net of H.
- (b) If R is a sensitive $c\varepsilon$ -approximation of H w.r.t. $\operatorname{Cap}(H, (t\varepsilon)^2)$, then $\operatorname{Cap}(H, (t\varepsilon)^2) \subseteq \operatorname{Cap}(R, ((t+c)\varepsilon)^2)$.