Finding Cliques in Social Networks: A New Distribution-Free Model

Jacob Fox Tim Roughgarden C. Seshadri Fan Wei Nicole Wein

1 Definitions

Let $G=(V, E)$ be an undirected graph. For $v \in V$, let $N(v)$ denote the neighborhood of v and $N_{2}(v)$ denote the vertices at distance exactly 2 from v. Furthermore, for a set $S \subseteq V$, we denote by $N(S)=\cap_{v \in S} N(v)$ the common neighborhood of S.

Definition 1. Given a graph and a value of c, a bad pair is a non-adjacent pair of vertices with at least c common neighbors.

Definition 2. For a positive integer c, G is c-closed if it contains no bad pair.
Definition 3. A graph is weakly c-closed if there exists an ordering of the vertices $\left\{v_{1}, \ldots, v_{n}\right\}$ such that for all i, v_{i} is in no bad pairs in the graph induced by $\left\{v_{i}, v_{i+1}, \ldots v_{n}\right\}$.

2 Main results

Theorem 4. Any weakly c-closed graph on n vertices has at most $3^{(c-1) / 3} n^{2}$ maximal cliques.
Theorem 5. Any c-closed graph on n vertices has at most $\min \left\{3^{(c-1) / 3} n^{2}, 4^{(c+4)(c-1) / 2} n^{2-2^{1-c}}\right\}$ maximal cliques.

Theorem 6. For any positive integer c, there are c-closed graphs with n vertices and $\Omega\left(c^{-3 / 2} 2^{c / 2} n^{3 / 2}\right)$ maximal cliques.

3 Tools

Lemma 7. For any v in c-closed graph, $G[N(v)]$ is a $(c-1)$-closed graph.
Lemma 8. $(1-x)^{k} \leq 1-\frac{x k}{2}$ for any $0<x \leq 1 / 2$ and $1 \leq k \leq 2$.
Theorem 9 (Tsukiyama et. al). There is an algorithm for enumerating all maximal cliques in graph in time $O(n m)$ per clique.

Theorem 10 (Moon, Moser). A graph G on n vertices has at most $3^{k / 3}$ maximal cliques.
Theorem 11. There is a graph G on n vertices with girth 5 and $\Omega\left(n^{3 / 2}\right)$ edges.

