Finding Cliques in Social Networks: A New Distribution-Free Model

Jacob Fox Tim Roughgarden C. Seshadri Fan Wei Nicole Wein

1 Definitions

Let G = (V, E) be an undirected graph. For $v \in V$, let N(v) denote the neighborhood of v and $N_2(v)$ denote the vertices at distance exactly 2 from v. Furthermore, for a set $S \subseteq V$, we denote by $N(S) = \bigcap_{v \in S} N(v)$ the common neighborhood of S.

Definition 1. Given a graph and a value of c, a *bad pair* is a non-adjacent pair of vertices with at least c common neighbors.

Definition 2. For a positive integer c, G is c-closed if it contains no bad pair.

Definition 3. A graph is *weakly c-closed* if there exists an ordering of the vertices $\{v_1, \ldots, v_n\}$ such that for all i, v_i is in no bad pairs in the graph induced by $\{v_i, v_{i+1}, \ldots, v_n\}$.

2 Main results

Theorem 4. Any weakly c-closed graph on n vertices has at most $3^{(c-1)/3}n^2$ maximal cliques.

Theorem 5. Any c-closed graph on n vertices has at most $\min\{3^{(c-1)/3}n^2, 4^{(c+4)(c-1)/2}n^{2-2^{1-c}}\}$ maximal cliques.

Theorem 6. For any positive integer c, there are c-closed graphs with n vertices and $\Omega(c^{-3/2}2^{c/2}n^{3/2})$ maximal cliques.

3 Tools

Lemma 7. For any v in c-closed graph, G[N(v)] is a (c-1)-closed graph.

Lemma 8. $(1-x)^k \le 1 - \frac{xk}{2}$ for any $0 < x \le 1/2$ and $1 \le k \le 2$.

Theorem 9 (Tsukiyama et. al). There is an algorithm for enumerating all maximal cliques in graph in time O(nm) per clique.

Theorem 10 (Moon, Moser). A graph G on n vertices has at most $3^{k/3}$ maximal cliques.

Theorem 11. There is a graph G on n vertices with girth 5 and $\Omega(n^{3/2})$ edges.