Flag Algebras: A First Glance

M. K. de Carli Silva, F. M. de Oliveira Filho, and C. M. Sato

presented by Radek Hušek

Fix a family \mathcal{H} of forbidden subgraphs.

Definition 1 (Type). A type of size k is an \mathcal{H} -free graph σ with $V(\sigma) = [k]$. The empty type is denoted by \emptyset .

Definition 2 (Flag). A σ -flag is a pair (F, θ) where F is an \mathcal{H} -free graph and θ is an embedding of σ into F. When the embedding itself is not important, we will drop it, speaking simply of the σ -flag F.

For $n \geq |\sigma|$, denote by \mathcal{F}_n^{σ} the set of all σ -flags of size n, taken up to isomorphism; denote by \mathcal{F}^{σ} the set of all σ -flags taken up to isomorphism. A type σ is *degenerate* if \mathcal{F}^{σ} is finite. We assume that all types are nondegenerate.

Figure 1: Let $\mathcal{H} = \{ \bigtriangleup \}$. On the top row we have all \varnothing -flags of sizes 2 and 3, up to isomorphism (nonedges are shown as dashed lines); notice that the triangle itself is not a flag. On the bottom row we have all flags of type $\sigma = 10002$; notice that the last two of these flags are not isomorphic, since the isomorphism has to preserve the labels.

We say that σ -flags F_1, \ldots, F_t fit in a σ -flag G if

$$|G| - |\sigma| \ge (|F_1| - |\sigma|) + \dots + (|F_t| - |\sigma|).$$

Definition 3 (Density). Let F_1, \ldots, F_t and (G, θ) be σ -flags such that F_1, \ldots, F_t fit in G. Choose pairwise-disjoint sets $U_1, \ldots, U_t \subseteq V(G) \setminus \text{Im } \theta$ uniformly at random. The density of F_1, \ldots, F_t in G, denoted $p(F_1, \ldots, F_t; G)$, is the probability that the σ -flag $(G[U_i \cup \text{Im } \theta], \theta)$ is isomorphic to F_i for $i = 1, \ldots, t$.

Theorem 1 (Chain rule). If F_1, \ldots, F_t , and G are σ -flags such that F_1, \ldots, F_t fit in G, then for every $1 \leq s \leq t$ and every n such that F_1, \ldots, F_s fit in a σ -flag of size n and a σ -flag of size n together with F_{s+1}, \ldots, F_t fit in G, the identity

$$p(F_1,\ldots,F_t;G) = \sum_{F \in \mathcal{F}_n^\sigma} p(F_1,\ldots,F_s;F) p(F,F_{s+1},\ldots,F_t;G)$$

holds.

Theorem 2. If F_1 , F_2 are fixed σ -flags, then there exists a function f(n) = O(1/n) such that if F_1 , F_2 fit in a σ -flag G, then $|p(F_1, F_2; G) - p(F_1; G)p(F_2; G)| \le f(|G|)$.

Definition 4 (Limit functional). Let $(A_k)_{k\geq 0}$ be a convergent sequence in \mathcal{F}^{σ} and let $\phi(F) = \lim_{k\to\infty} p(F; A_k)$ be the pointwise limit of the functions $p(\cdot; A_k)$. Extend ϕ linearly to $\mathbb{R}\mathcal{F}^{\sigma}$, obtaining a linear functional. We say that ϕ is the limit functional of the convergent sequence $(A_k)_{k\geq 0}$ or, when the sequence itself is not relevant, that it is a limit functional.