Threshold Secret Sharing Requires a Linear Size Alphabet

Andrej Bogdanov, Siyao Guo, Ilan Komargodski

Secret Bit Sharing

D knows secret bit $b \in\{0,1\}$.

- Access structure $\mathcal{A}=(\mathcal{S}, \mathcal{R})$.
- $\mathcal{R} \subseteq 2^{n}$ - qualified, closed to supersets.
- $\mathcal{S} \subseteq 2^{n}$ - unqualified, closed to subsets.
- Scheme (formally) - pairs of distributions p_{0} and p_{1} over Σ_{n}.
- Reconstruction: Every set of parties from \mathcal{R} can reconstruct the secret bit b.
- For every $R \in \mathcal{R}$ the marginal distributions of p_{0} and p_{1} on the set R are disjoint.
- Secrecy: Every set of parties from \mathcal{S} can not reveal any information about b.
- For every $S \in \mathcal{S}$ the marginal distributions of p_{0} and p_{1} on the set S are identical.

Access Structure

- Total access structure: $\mathcal{A}=(\mathcal{R}, \mathcal{S})$ is a partition of $2^{n}, A \in \mathcal{A}$ if $A \in \mathcal{R}, B \notin \mathcal{A}$ if $B \in \mathcal{S}$.
- Threshold structure $\operatorname{Thr}_{t}^{n}=(\mathcal{R}=\{R \subseteq[n]:|R| \geq t\}, \mathcal{S}=\{S \subseteq[n]:|S| \leq t\})$.
- Ramp structure $\operatorname{Ramp}_{r, s}^{n}=(\mathcal{R}=\{R \subseteq[n]:|R| \geq r\}, \mathcal{S}=\{S \subseteq[n]:|S| \leq s\})$.

Shamir's Secret Sharing

- Field \mathbb{Z}_{q}, secret $x \in \mathbb{Z}_{q}, a_{1}, \ldots, a_{t-1}, \in_{r} \mathbb{Z}_{q}, a_{0}=x$.
- $p(x)=\sum_{i=0}^{t-1} a_{i} x^{i}, m_{i}=p(i)$.
- Recovery: Each t parties can reconstruct $t-1$ degree polynomial p and $p(0)=x$.
- Secrecy: For each $t-1$ parties the probability of each value of $p(0)$ is the same.

Alternative Formulation

- For $x \in \mathbb{Z}_{q}^{n}:[x]_{\neq 0}=\left\{j \in[n]: x_{j} \neq 0\right\},[x]_{=0}=\left\{j \in[n]: x_{j}=0\right\}$.
- A function $g_{S}: \mathbb{Z}_{q}^{n} \rightarrow \mathbb{C}$ is an S-junta if the value $g_{S}\left(x_{1}, \ldots, x_{n}\right)$ is determined by the inputs $x_{j}: j \in S$.

Lemma 1. A secret sharing scheme of a 1-bit secret for a partial access structure $\mathcal{A}=(\mathcal{S}, \mathcal{R})$ over an alphabet Z_{q} exists if and only if there exists a function $f: \mathbb{Z}_{q}^{n} \rightarrow \mathbb{R}$ that is not identically zero satisfying the following properties:

- Reconstruction: For all $x, z \in \mathbb{Z}_{q}^{n}$ such that $[z]_{=0} \in \mathcal{R}, f(x) f(x-z) \geq 0$.
- Secrecy: For every $S \in \mathcal{S}$ and every S-junta $g_{S}: \mathbb{Z}_{q}^{n} \rightarrow \mathbb{C}, \mathbb{E}_{x}\left[f(x) g_{S}(x)\right]=0$.

Results

Theorem 2 (Main Theorem). For every $n \in \mathbb{N}$ and $1 \leq s<r<n$, any secret bit sharing scheme for $\operatorname{Ramp}_{r, s}^{n}$ requires shares of at least $\log ((r+1) /(r-s))$ bits.
Corollary 3. For every $n \in \mathbb{N}$ and $1<t<n$, any secret bit sharing scheme for Thr_{t}^{n} requires shares of at least $\log (t+1)$ bits.

Theorem 4 (Kilian, Nisan, '90). For every $n \in \mathbb{N}$ and $1<t<n$, any secret bit sharing scheme for Thr_{t}^{n} requires shares of at least $\log (n-t+2)$ bits.

Game $\mathcal{G}(\mathcal{A}, \theta)$

- \mathcal{A} is an access structure $(\mathcal{R}, \mathcal{S}), \theta \in \mathbb{R}$ and $\theta>0$.
- Alice picks $A \notin \mathcal{S}$, Bob picks $B \in \mathcal{R}$.
- Payoff: $(-\theta)^{|A \backslash B|}$, Alice wins if payoff is non-negative.

Lemma 5. If there exists a secret sharing scheme for \mathcal{A} with alphabet size $q \in \mathbb{N}$, then Alice wins in the game $\mathcal{G}(\mathcal{A}, 1 /(q-1))$.
Lemma 6. Bob wins in the game $\mathcal{G}\left(\operatorname{Ramp}_{r, s}^{n}, \theta\right)$ for any $\theta>(r-1) /(s+1)$.

Limitation of the Game Approach

Theorem 7. For all $1<t<n$ and $0<\theta \leq 1 / t$, Alice wins in the game $\mathcal{G}\left(\operatorname{Thr}_{t}^{n}, \theta\right)$.

- $\min \mathcal{A}=\{A \in \mathcal{A}: \forall B \in \mathcal{A} \not \subset A\}$.

Theorem 8. For every access structure A and every $0<\theta \leq 1 /(|\min \mathcal{A}|-1)$ Alice wins in the game $\mathcal{G}(\mathcal{A}, \theta)$.

Fourier Analysis

- Space of functions $\mathbb{Z}_{q}^{n} \rightarrow \mathbb{C}$.
- Character for $a \in \mathbb{Z}_{q}^{n}: \chi_{a}: \mathbb{Z}_{q}^{n} \rightarrow \mathbb{C}, \chi_{a}=\omega^{\langle a, x\rangle}$, where $\omega=e^{2 \pi i / q}$.
- Characters are an orthonormal basis with respect to the inner product $\langle f, g\rangle=\mathbb{E}_{x}[f(x) \overline{g(x)}]$.
- $\chi_{a} \chi_{b}=\chi_{a+b}, \chi_{a}^{-1}=\overline{\chi_{a}}=\chi_{-a}$.
- $f=\sum_{a \in \mathbb{Z}_{q}^{n}} \hat{f}(a) \chi_{a}, \hat{f}(a)=\langle f, \chi a\rangle=\mathbb{E}_{x}\left[f(x) \overline{\chi_{a}(x)}\right]$.

