Threshold Secret Sharing Requires a Linear Size Alphabet

Andrej Bogdanov, Siyao Guo, Ilan Komargodski

Secret Bit Sharing

- Access structure $\mathcal{A} = (\mathcal{S}, \mathcal{R})$.
 - $\mathcal{R} \subseteq 2^n$ qualified, closed to supersets.
 - $S \subseteq 2^n$ unqualified, closed to subsets.
- Scheme (formally) pairs of distributions p_0 and p_1 over Σ_n .
- **Reconstruction:** Every set of parties from \mathcal{R} can reconstruct the secret bit b.
 - For every $R \in \mathcal{R}$ the marginal distributions of p_0 and p_1 on the set R are disjoint.
- Secrecy: Every set of parties from S can not reveal any information about b.
 - For every $S \in \mathcal{S}$ the marginal distributions of p_0 and p_1 on the set S are identical.

Access Structure

- Total access structure: $\mathcal{A} = (\mathcal{R}, \mathcal{S})$ is a partition of 2^n , $A \in \mathcal{A}$ if $A \in \mathcal{R}, B \notin \mathcal{A}$ if $B \in \mathcal{S}$.
- Threshold structure $\mathsf{Thr}_t^n = \left(\mathcal{R} = \{R \subseteq [n] : |R| \ge t\}, \mathcal{S} = \{S \subseteq [n] : |S| \le t\}\right).$
- Ramp structure $\operatorname{Ramp}_{r,s}^n = \left(\mathcal{R} = \{R \subseteq [n] : |R| \ge r\}, \mathcal{S} = \{S \subseteq [n] : |S| \le s\}\right).$

Shamir's Secret Sharing

- Field \mathbb{Z}_q , secret $x \in \mathbb{Z}_q$, $a_1, \ldots, a_{t-1}, \in_r \mathbb{Z}_q, a_0 = x$.
- $p(x) = \sum_{i=0}^{t-1} a_i x^i, m_i = p(i).$
- **Recovery**: Each t parties can reconstruct t 1 degree polynomial p and p(0) = x.
- Secrecy: For each t-1 parties the probability of each value of p(0) is the same.

Alternative Formulation

- For $x \in \mathbb{Z}_q^n$: $[x]_{\neq 0} = \{j \in [n] : x_j \neq 0\}, [x]_{=0} = \{j \in [n] : x_j = 0\}.$
- A function $g_S : \mathbb{Z}_q^n \to \mathbb{C}$ is an S-junta if the value $g_S(x_1, \ldots, x_n)$ is determined by the inputs $x_j : j \in S$.

Lemma 1. A secret sharing scheme of a 1-bit secret for a partial access structure $\mathcal{A} = (\mathcal{S}, \mathcal{R})$ over an alphabet Z_q exists if and only if there exists a function $f : \mathbb{Z}_q^n \to \mathbb{R}$ that is not identically zero satisfying the following properties:

- **Reconstruction:** For all $x, z \in \mathbb{Z}_a^n$ such that $[z]_{=0} \in \mathcal{R}$, $f(x)f(x-z) \ge 0$.
- Secrecy: For every $S \in \mathcal{S}$ and every S-junta $g_S : \mathbb{Z}_q^n \to \mathbb{C}, \mathbb{E}_x[f(x)g_S(x)] = 0.$

Results

Theorem 2 (Main Theorem). For every $n \in \mathbb{N}$ and $1 \leq s < r < n$, any secret bit sharing scheme for $\operatorname{\mathsf{Ramp}}_{r,s}^n$ requires shares of at least $\log((r+1)/(r-s))$ bits.

Corollary 3. For every $n \in \mathbb{N}$ and 1 < t < n, any secret bit sharing scheme for Thr_t^n requires shares of at least $\log(t+1)$ bits.

Theorem 4 (Kilian, Nisan, '90). For every $n \in \mathbb{N}$ and 1 < t < n, any secret bit sharing scheme for Thr_t^n requires shares of at least $\log(n - t + 2)$ bits.

Game $\mathcal{G}(\mathcal{A}, \theta)$

- \mathcal{A} is an access structure $(\mathcal{R}, \mathcal{S}), \theta \in \mathbb{R}$ and $\theta > 0$.
- Alice picks $A \notin S$, Bob picks $B \in \mathcal{R}$.
- Payoff: $(-\theta)^{|A\setminus B|}$, Alice wins if payoff is non-negative.

Lemma 5. If there exists a secret sharing scheme for \mathcal{A} with alphabet size $q \in \mathbb{N}$, then Alice wins in the game $\mathcal{G}(\mathcal{A}, 1/(q-1))$.

Lemma 6. Bob wins in the game $\mathcal{G}(\mathsf{Ramp}_{r,s}^n, \theta)$ for any $\theta > (r-1)/(s+1)$.

Limitation of the Game Approach

Theorem 7. For all 1 < t < n and $0 < \theta \le 1/t$, Alice wins in the game $\mathcal{G}(\mathsf{Thr}_t^n, \theta)$.

• min $\mathcal{A} = \{A \in \mathcal{A} : \forall B \in \mathcal{A} \not\subset A\}.$

Theorem 8. For every access structure A and every $0 < \theta \leq 1/(|\min A| - 1)$ Alice wins in the game $\mathcal{G}(A, \theta)$.

Fourier Analysis

- Space of functions $\mathbb{Z}_q^n \to \mathbb{C}$.
- Character for $a \in \mathbb{Z}_q^n$: $\chi_a : \mathbb{Z}_q^n \to \mathbb{C}, \ \chi_a = \omega^{\langle a, x \rangle}$, where $\omega = e^{2\pi i/q}$.
- Characters are an orthonormal basis with respect to the inner product $\langle f, g \rangle = \mathbb{E}_x[f(x)g(x)]$.

•
$$\chi_a \chi_b = \chi_{a+b}, \ \chi_a^{-1} = \overline{\chi_a} = \chi_{-a}.$$

• $f = \sum_{a \in \mathbb{Z}_a^n} \hat{f}(a)\chi_a, \ \hat{f}(a) = \langle f, \chi a \rangle = \mathbb{E}_x[f(x)\overline{\chi_a(x)}].$