Average-Case Fine-Grained Hardness

Marshall Ball, Alon Rosen, Manuel Sabin, Prashant Nalini Vasudevan

Randomized Algorithms

1. Worst case - outputs a correct answer for every input with a probability at least $2 / 3$.
2. Average case - outputs a correct answer with a probability $2 / 3$ over an uniform distribution of inputs.

Problems

SETH For every $\varepsilon>0$ there is k such that there is no algorithm for k-SAT running in time $2^{(1-\varepsilon) n}$.
OV Given two sets U, V of n vectors from $0,1^{d}$, decide whether there exist $u \in U$ and $v \in V$ such that $\langle u, v\rangle=0($ over $\mathbb{Z}), d \in O(\log n)$.

3SUM Given a set $S \subset\left\{-n^{3}, \ldots, n^{3}\right\}$ of size n, decide if there exist distinct $a, b, c \in S$ such that $a+b=c$.

C3SUM Given three n-element arrays, A, B, and C, with entries in $\left\{-n^{3}, \ldots, n^{3}\right\}$, decide whether exist $i, j \in[n]$ such that $A[i]+B[j]=C[i+j]$.
APSP Find distance between every pair of vertices in a weighted graph $G=(V, E), w: E \rightarrow\left[n^{c}\right]$ for some sufficiently large c.
ZWT Given a weighted graph $G=(V, E), w: E \rightarrow[n]$, decide whether there exists a triangle with edge weights w_{1}, w_{2}, w_{3} such that $w_{1}+w_{2}+w_{3}=0$.

TC Given a vertex-colored graph $G=(V, E), C: V \rightarrow[k]$, decide whether for each triple of three colors $a, b, c \in[k]$ there exists vertices $x, y, z \in V$ that form a triangle and $C(x)=a, C(y)=b$, and $C(z)=c$.
$\mathcal{F P}$ Polynomial representation of a problem P .

Problems	No Algo in Time
SAT	$2^{(1-\varepsilon) n}$
OV, 3SUM, C3SUM	$n^{2-\varepsilon}$
APSP, ZWT, TC	$n^{3-\varepsilon}$

Main Tool

Strategy: Represent problems as polynomials and use the following lemma for reduction from the average case to the worst case.

Definition 1. A family of functions $\mathcal{F}=\left\{f_{n}\right\}$ is computable in time t on average if there is an algorithm that runs in $t(n)$ time on the domain of f_{n} and, for all large enough n, computes f_{n} correctly with probability at least $2 / 3$ over the uniform distribution of inputs in its domain.

Lemma 2. Consider positive integers n, d, and p, and an $\varepsilon \in(0,1 / 3)$ such that $d>9, p$ is prime and $p>12 d$. Suppose that for some polynomial $f: \mathbb{Z}_{p}^{n} \rightarrow \mathbb{Z}_{p}$ of degree d, there is an algorithm A running in time t such that:

$$
\operatorname{Pr}_{x \in \mathbb{Z}_{p}^{n}}[A(x)=f(x)] \geq 1-\varepsilon
$$

Then there is a randomized algorithm B that runs in time $O\left(n d^{2} \log ^{2} p+d^{3}+t D\right)$ such that for any $x \in \mathbb{Z}_{p}^{n}$:

$$
\operatorname{Pr}[B(x)=f(x)] \geq \frac{2}{3}
$$

