Average-Case Fine-Grained Hardness

Marshall Ball, Alon Rosen, Manuel Sabin, Prashant Nalini Vasudevan

Randomized Algorithms

- 1. Worst case outputs a correct answer for every input with a probability at least 2/3.
- 2. Average case outputs a correct answer with a probability 2/3 over an uniform distribution of inputs.

Problems

- SETH For every $\varepsilon > 0$ there is k such that there is no algorithm for k-SAT running in time $2^{(1-\varepsilon)n}$.
- OV Given two sets U, V of n vectors from $0, 1^d$, decide whether there exist $u \in U$ and $v \in V$ such that $\langle u, v \rangle = 0$ (over \mathbb{Z}), $d \in O(\log n)$.
- **3SUM** Given a set $S \subset \{-n^3, \ldots, n^3\}$ of size n, decide if there exist distinct $a, b, c \in S$ such that a + b = c.
- C3SUM Given three *n*-element arrays, A, B, and C, with entries in $\{-n^3, \ldots, n^3\}$, decide whether exist $i, j \in [n]$ such that A[i] + B[j] = C[i+j].
- APSP Find distance between every pair of vertices in a weighted graph $G = (V, E), w : E \to [n^c]$ for some sufficiently large c.
- ZWT Given a weighted graph $G = (V, E), w : E \to [n]$, decide whether there exists a triangle with edge weights w_1, w_2, w_3 such that $w_1 + w_2 + w_3 = 0$.
- TC Given a vertex-colored graph $G = (V, E), C : V \to [k]$, decide whether for each triple of three colors $a, b, c \in [k]$ there exists vertices $x, y, z \in V$ that form a triangle and C(x) = a, C(y) = b, and C(z) = c.
- \mathcal{FP} Polynomial representation of a problem P.

Problems	No Algo in Time
SAT	$2^{(1-\varepsilon)n}$
OV, 3SUM, C3SUM	$n^{2-\varepsilon}$
APSP, ZWT, TC	$n^{3-\varepsilon}$

Main Tool

Strategy: Represent problems as polynomials and use the following lemma for reduction from the average case to the worst case.

Definition 1. A family of functions $\mathcal{F} = \{f_n\}$ is computable in time t on average if there is an algorithm that runs in t(n) time on the domain of f_n and, for all large enough n, computes f_n correctly with probability at least 2/3 over the uniform distribution of inputs in its domain.

Lemma 2. Consider positive integers n, d, and p, and an $\varepsilon \in (0, 1/3)$ such that d > 9, p is prime and p > 12d. Suppose that for some polynomial $f : \mathbb{Z}_p^n \to \mathbb{Z}_p$ of degree d, there is an algorithm Arunning in time t such that:

$$\Pr_{x \in \mathbb{Z}_p^n}[A(x) = f(x)] \ge 1 - \varepsilon$$

Then there is a randomized algorithm B that runs in time $O(nd^2 \log^2 p + d^3 + tD)$ such that for any $x \in \mathbb{Z}_p^n$:

$$\Pr[B(x) = f(x)] \ge \frac{2}{3}$$