Definition. We say that T = (V, E) is a tournament if it is an orientation of a complete graph. We say that u is adjacent to v and v is adjacent from u iff $(u, v) \in E$.

Definition. If T is a tournament and $X, Y \subseteq V(T)$, we say that X dominates Y if every vertex in $Y \setminus X$ is adjacent from some vertex in X. The domination number of T is the smallest cardinality of a set that dominates V(T).

Definition. If S, T are tournaments, we say that T is S-free if no subtournament of T is isomorphic to S.

Definition. We say that a tournament S is a rebel if the class of all S-free tournaments has bounded domination.

Definition. A k-colouring of a tournament T is a partition of V(T) into k transitive sets, and if T admits such a partition it is k-colourable.

Definition. Let us say a tournament is a poset tournament if its vertex set can be ordered $\{v_1, \ldots, v_n\}$ such that for all i < j < k if v_j is adjacent from v_i and adjacent to v_k , then v_i is adjacent to v_k .

Definition. Let H be a hypergraph. We say that $X \subseteq H$ is shattered by H if for every $Y \subseteq X$, there exists $A \in E(H)$ with $A \cap X = Y$. The largest cardinality of a shattered set is called Vapnik-Chervonenkis dimension or VC-dimension of H.

Definition. Let T be a tournament, and for each vertex v, let $N_T^-(v)$ denote the set of all vertices of T that are either adjacent to v or equal to v. Thus $\{N_T^-(v): v \in V(T)\}$ is the edge set of a hypergraph with vertex set V(T), called the hypergraph of in-neighbourhoods of T.

Definition. If H is a hypergraph, τ_H denotes the minimum cardinality of a set which has nonempty intersection with every edge of H, and τ_H^* is a fractional relaxation of this: the minimum of $\sum_{v \in V(H)} f(v)$ over all functions f from V(H) to the nonnegative real numbers such that $\sum_{v \in A} f(v) \ge 1$ for every edge A of H.

Claim (Sauer-Shelah lemma). Let H be a hypergraph, and let $X \subseteq V(H)$ with |X| = n, such that no (d+1)-subset of X is shattered by H. Then there are at most $\sum_{0 \le i \le d} {n \choose i}$ distinct sets $A \cap X$ where $A \in E(H)$.

Claim. For every 2-colourable tournament S, there exists $d \ge 0$ with the following property. Let $\{C, D\}$ be a 2-colouring of S. Let T be a tournament and let $A, B \subseteq V(T)$ be disjoint. For each $v \in B$, let N(v) denote the set of all $u \in A$ adjacent to v. Let H be a hypergraph with vertex set A and edge set $\{N(v): v \in B\}$. Let $X \subseteq A$ be shattered by H with $|X| \ge d$. Then there is an embedding of (S, C, D) into (T, X, B).

Lemma. There is a tournament R with a 2-colouring $\{C, I\}$, with |I| = m!n, such that for every transitive tournament M with vertex set C there is an embedding of (S, C, D) into $(R \leftarrow M, C, I)$. Moreover no two vertices in C are adjacent to exactly the same vertices in I.

Claim. For every 2-colourable tournament S, there is a number d such that for every S-free tournament T, its hypergraph of in-neighbourhoods has VC-dimension at most d.

Claim. Let $d \ge 1$ and let H be a hypergraph with VC-dimension at most d. Then $\tau_H \le 2d\tau_H^* \log(11\tau_H^*)$.

Claim. Let T be a tournament, let $d \ge 1$ and let the VC-dimension of its hypergraph of in-neighbourhoods be at most d. Then the domination number of T is at most 18d.

Theorem. Every 2-colourable tournament is a rebel.

Theorem. Every rebel is a poset tournament.