The list chromatic number of graphs with small clique number

Michael Molloy

1 Introduction

- Set of colors C.
- Each vertex v of a graph G has a list of color $L_v \subseteq C, |L_v| = q$.
- We are looking for proper coloring $\varphi: V(G) \to C$ such that for every vertex $v: \varphi(v) \in L_v$.
- The list chromatic number of G, denoting by $\chi_{\ell}(G)$, is the minimum q such that for any list assignment exists coloring which respects the lists.

Theorem 1. For every $\varepsilon > 0$ there exists Δ_{ε} such that every triangle-free graph G with maximum degree $\Delta \ge \Delta_{\varepsilon}$ has $\chi_{\ell}(G) \le (1 + \varepsilon)\Delta/\ln \Delta$.

2 Tools

Theorem 2 (Lovász Local Lemma). Let A_1, \ldots, A_n be a set of random events, each with probability at most 1/4. For each $i \in [n]$ we have a subset \mathcal{D}_i of the events such that A_i is mutually independent of all other event outside of \mathcal{D}_i . If for each $i \in [n]$ we have $\sum_{j \in \mathcal{D}_i} \Pr[A_j] < 1/4$ then $\Pr[\bar{A}_1 \cap \cdots \cap \bar{A}_n] > 0$.

Notation

- N_v neighborhood of v.
- $F_v \subseteq L_v$ free colors for v with Blank.
- $D_{v,c} = \{u \in N_v | \varphi(u) = Blank, c \in F_u\}$ candidates for the color c.
- $\alpha = \Delta^{\varepsilon/2}$ limit for available colors.
- Flaws of partial coloring φ :

$$-B_v: |F_v| < \alpha.$$

$$-Z_v: \sum_{c \in F_v} |D_{v,c}| > \frac{\alpha}{10} \cdot |F_v|.$$

Lemma 3. Let $v \in V(G)$. We assign a random color from F_u to each vertex $u \in N_v$ (uniformly, independently). Then, $\Pr[B_v], \Pr[Z_v] < \Delta^{-4}$.

Lemma 4. Suppose we have a partial list coloring φ such that for every vertex v, neither B_v nor Z_v hold. Then, we can color the blank vertices to obtain a full list coloring.

3 Algorithm

We fix an ordering < of V(G) and order the flaws:

$$\forall u, v \in V(G) : B_u \prec Z_v$$

$$\forall u, v \in V(G), u < v : B_u \prec B_v, Z_u \prec Z_v$$

Consider a partial coloring φ and any flaw f_v of φ . We try to remove the flaw f_v using randomized algorithm.

 $\mathbf{FIX}(f_v, \varphi)$

 $\begin{aligned} Set \ \mathcal{L} &= \{F_u : u \in N_v\}.\\ Write \ ``COLORS \ \ell'' \ where \ f_v &= \gamma(\mathcal{L}, \ell). \end{aligned}$ $(*) \ \forall u \in N_v : \varphi'(u) \in_r F_u \ (\varphi'(w) = \varphi(w) \ \text{for all other vertices}).\\ \text{While } \exists B_w, Z_w : \text{dist}(w, v) \leq 2:\\ \text{Let } g_w \ \text{be the least such flaw and call } \varphi' &= \text{FIX}(g, \varphi'). \end{aligned}$ $Write \ ``FIX(B, \ell)'' \ or \ ``FIX(Z, \ell)'' \\ where \ w &= \beta(v, \ell). \end{aligned}$

Write "Return".

Return φ' .

Observation 5. Let φ' be a coloring returned by $FIX(f_v, \varphi)$:

- 1. The flaw f_v does not hold.
- 2. There are no flaws that did not hold in φ .

More Notation

- φ_0 an initially coloring.
- f any flaw of φ_0 .
- φ_t current coloring after t execution of (*).
- H_t log of FIX after t execution of (*).
- R_t random bits used for all execution of (*).

Lemma 6. We can reconstruct the first t steps of FIX from $\varphi_0, \varphi_t, f_v$ and H_t .

Lemma 7. For any partial coloring φ and any flaw f_v of φ , the probability that $FIX(f_v, \varphi)$ continues for at least n executions of (*) is at most $\Delta^{-n/2}$.

4 K_r -free Graphs

Theorem 8. For any $r \ge 4$, every K_r -free graph G with maximum degree Δ has $\chi_{\ell}(G) \le 200r \frac{\Delta \ln \ln \Delta}{\ln \Delta}$.