The list chromatic number of graphs with small clique number

Michael Molloy

1 Introduction

- Set of colors C.
- Each vertex v of a graph G has a list of color $L_{v} \subseteq C,\left|L_{v}\right|=q$.
- We are looking for proper coloring $\varphi: V(G) \rightarrow C$ such that for every vertex $v: \varphi(v) \in L_{v}$.
- The list chromatic number of G, denoting by $\chi_{\ell}(G)$, is the minimum q such that for any list assignment exists coloring which respects the lists.

Theorem 1. For every $\varepsilon>0$ there exists Δ_{ε} such that every triangle-free graph G with maximum degree $\Delta \geq \Delta_{\varepsilon}$ has $\chi_{\ell}(G) \leq(1+\varepsilon) \Delta / \ln \Delta$.

2 Tools

Theorem 2 (Lovász Local Lemma). Let A_{1}, \ldots, A_{n} be a set of random events, each with probability at most $1 / 4$. For each $i \in[n]$ we have a subset \mathcal{D}_{i} of the events such that A_{i} is mutually independent of all other event outside of \mathcal{D}_{i}. If for each $i \in[n]$ we have $\sum_{j \in \mathcal{D}_{i}} \operatorname{Pr}\left[A_{j}\right]<1 / 4$ then $\operatorname{Pr}\left[\overline{A_{1}} \cap \cdots \cap \overline{A_{n}}\right]>0$.

Notation

- $N_{v}-$ neighborhood of v.
- $F_{v} \subseteq L_{v}$ - free colors for v with Blank.
- $D_{v, c}=\left\{u \in N_{v} \mid \varphi(u)=\right.$ Blank, $\left.c \in F_{u}\right\}$ - candidates for the color c.
- $\alpha=\Delta^{\varepsilon / 2}$ - limit for available colors.
- Flaws of partial coloring φ :
$-B_{v}:\left|F_{v}\right|<\alpha$.
$-Z_{v}: \sum_{c \in F_{v}}\left|D_{v, c}\right|>\frac{\alpha}{10} \cdot\left|F_{v}\right|$.
Lemma 3. Let $v \in V(G)$. We assign a random color from F_{u} to each vertex $u \in N_{v}$ (uniformly, independently). Then, $\operatorname{Pr}\left[B_{v}\right], \operatorname{Pr}\left[Z_{v}\right]<\Delta^{-4}$.
Lemma 4. Suppose we have a partial list coloring φ such that for every vertex v, neither B_{v} nor Z_{v} hold. Then, we can color the blank vertices to obtain a full list coloring.

3 Algorithm

We fix an ordering $<$ of $V(G)$ and order the flaws:

$$
\begin{aligned}
\forall u, v \in V(G): B_{u} & \prec Z_{v} \\
\forall u, v \in V(G), u<v: B_{u} & \prec B_{v}, Z_{u} \prec Z_{v}
\end{aligned}
$$

Consider a partial coloring φ and any flaw f_{v} of φ. We try to remove the flaw f_{v} using randomized algorithm.
$\boldsymbol{\operatorname { F I X }}\left(f_{v}, \varphi\right)$
Set $\mathcal{L}=\left\{F_{u}: u \in N_{v}\right\}$.
Write "COLORS ℓ " where $f_{v}=\gamma(\mathcal{L}, \ell)$.
(*) $\forall u \in N_{v}: \varphi^{\prime}(u) \in_{r} F_{u}\left(\varphi^{\prime}(w)=\varphi(w)\right.$ for all other vertices). While $\exists B_{w}, Z_{w}: \operatorname{dist}(w, v) \leq 2$:

Let g_{w} be the least such flaw and call $\varphi^{\prime}=\operatorname{FIX}\left(g, \varphi^{\prime}\right) . \quad$ Write " $F I X(B, \ell)$ " or "FIX (Z, ℓ) " where $w=\beta(v, \ell)$.
Return φ^{\prime}.
Write "Return".
Observation 5. Let φ^{\prime} be a coloring returned by $\operatorname{FIX}\left(f_{v}, \varphi\right)$:

1. The flaw f_{v} does not hold.
2. There are no flaws that did not hold in φ.

More Notation

- $\varphi_{0}-$ an initially coloring.
- f - any flaw of φ_{0}.
- φ_{t} - current coloring after t execution of $(*)$.
- $H_{t}-\log$ of FIX after t execution of $\left(^{*}\right)$.
- R_{t} - random bits used for all execution of $(*)$.

Lemma 6. We can reconstruct the first t steps of $F I X$ from $\varphi_{0}, \varphi_{t}, f_{v}$ and H_{t}.
Lemma 7. For any partial coloring φ and any flaw f_{v} of φ, the probability that $\operatorname{FIX}\left(f_{v}, \varphi\right)$ continues for at least n executions of $\left({ }^{*}\right)$ is at most $\Delta^{-n / 2}$.

$4 \quad K_{r}$-free Graphs

Theorem 8. For any $r \geq 4$, every K_{r}-free graph G with maximum degree Δ has $\chi_{\ell}(G) \leq 200 r \frac{\Delta \ln \ln \Delta}{\ln \Delta}$.

