Karel Král

kralka@iuuk.mff.cuni.cz

The Erdős discrepancy problem (Terence Tao)

Nonstandard Ramsey-Type Principles

Definition 1.[Discrepancy] Given a sequence $f: \mathbb{N} \rightarrow H$ taking values in a real or complex Hilbert space H, define the discrepancy of f to be the quantity

$$
\sup _{n, d \in \mathbb{N}}\left\|\sum_{j=1}^{n} f(j d)\right\|_{H}
$$

Theorem 1.1 (Erdős discrepancy problem, vector-valued case). Let H be a real or complex Hilbert space, and let $f: \mathbb{N} \rightarrow H$ be a function such that $\|f(n)\|_{H}=1$ for each $n \in \mathbb{N}$. Then the discrepancy of f is infinite.

Theorem 1.8 (Equivalent form of vector-valued Erdős discrepancy problem). Let $g: \mathbb{N} \rightarrow S^{1}$ be a stochastic completely multiplicative function taking values in the unit circle $S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$ (where we give the space $\left(S^{1}\right)^{\mathbb{N}}$ of functions from \mathbb{N} to S^{1} the product σ-algebra). Then

$$
\sup _{n} \mathbb{E}\left|\sum_{j=1}^{n} g(j)\right|^{2}=+\infty
$$

Theorem 1.9 (Measure-theoretic formulation). Let (Ω, μ) be a probability space, and let $g: \Omega \rightarrow$ $\left(S^{1}\right)^{\mathbb{N}}$ be a measurable function to the space $\left(S^{1}\right)^{\mathbb{N}}$ of functions from \mathbb{N} to S^{1}, such that $g(\omega) \in\left(S^{1}\right)^{\mathbb{N}}$ is completely multiplicative for μ-almost every $\omega \in \Omega$ (that is to say, $g(\omega)(n m)=g(\omega)(n) g(\omega)(m)$ for all $n, m \in \mathbb{N}$ and μ-almost all $\omega \in \Omega$). Then one has

$$
\sup _{n} \int_{\Omega}\left|\sum_{j=1}^{n} g(\omega)(j)\right|^{2} d \mu(\omega)=+\infty
$$

Proof that Theorem 1.1 implies Theorem 1.8

If (Ω, μ) and g are as in Theorem 1.9 one takes H to be the complex Hilbert space $L^{2}(\Omega, \mu)$ and for each natural number n we let $f(n) \in H$ be the function

$$
f(n): \omega \mapsto g(\omega)(n)
$$

Proof that Theorem 1.9 implies Theorem 1.1

Observation 2. We claim that it suffices to construct, for each $X \geq 1$, a stochastic completely multiplicative function g_{x} taking values in S^{1} such that

$$
\mathbb{E}\left|\sum_{j=1}^{n} g_{x}(j)\right|<_{C} 1
$$

for all $n \leq X$, where the implied constant is uniform in n and X, but we allow the underlying probability space defining the stochastic function g_{X} to depend on X.

Definition 3.[Fourier expansion]

$$
\begin{gathered}
F(x)=\sum_{\xi \in(\mathbb{Z} / M \mathbb{Z})^{r}} \hat{F}(\xi) e\left(\frac{x \cdot \xi}{M}\right) \\
\hat{F}(\xi)=\frac{1}{M^{r}} \sum_{x \in(\mathbb{Z} / M \mathbb{Z})^{r}} F(x) e\left(-\frac{x \cdot \xi}{M}\right)
\end{gathered}
$$

van der Corput argument

Theorem 1.10 (Logarithmically averaged nonasymptotic Elliott conjecture (Tao)). Let a_{1}, a_{2} be natural numbers, and let b_{1}, b_{2} be integers such that $a_{1} b_{2}-a_{2} b_{1} \neq 0$. Let $\varepsilon>0$, and suppose that A is sufficiently large depending on $\varepsilon, a_{1}, a_{2}, b_{1}, b_{2}$. Let $x \geq w \geq A$, and let $g_{1}, g_{2}: \mathbb{N} \rightarrow \mathbb{C}$ be multiplicative functions with $\left|g_{1}(n)\right|,\left|g_{2}(n)\right| \leq 1$ for all n, with g_{1} "non-pretentious" in the sense that

$$
\sum_{p \leq x} \frac{1-\Re g_{1}(p) \overline{\chi(p)} p^{-i t}}{p} \geq A
$$

for all Dirichlet characters χ of period at most A, and all real numbers t with $|t| \leq A x$. Then

$$
\left|\sum_{x / w<n \leq x} \frac{g_{1}\left(a_{1} n+b_{1}\right) g_{2}\left(a_{2} n+b_{2}\right)}{n}\right| \geq \varepsilon \log \omega
$$

Proposition 1.11 (van der Corput argument). Suppose that $g: \mathbb{N} \rightarrow S^{1}$ is a stochastic completely multiplicative function, such that

$$
\mathbb{E}\left|\sum_{j=1}^{n} g(j)\right|^{2} \leq C^{2}
$$

for some finite $C>0$ and all natural numbers n (thus, g would be a counterexample to Theorem 1.8). Let $\varepsilon>0$, and suppose that X is sufficiently large depending on ε, C. Then with probability $1-O(\varepsilon)$, one can find a (stochastic) Dirichlet character χ of period $q=O_{C, \varepsilon}(1)$ and a (stochastic) real number $t=O_{C, \varepsilon}(X)$ such that

$$
\sum_{p \leq X} \frac{1-\Re g(p) \overline{\chi(p)} p^{-i t}}{p}<_{C, \varepsilon} 1
$$

