Karel Král

kralka@iuuk.mff.cuni.cz

The Erdős discrepancy problem (Terence Tao)

Nonstandard Ramsey-Type Principles

Definition 1. [Discrepancy] Given a sequence $f \colon \mathbb{N} \to H$ taking values in a real or complex Hilbert space H, define the discrepancy of f to be the quantity

$$\sup_{n,d\in\mathbb{N}} \left\| \sum_{j=1}^n f(jd) \right\|_{H}$$

Theorem 1.1 (Erdős discrepancy problem, vector-valued case). Let H be a real or complex Hilbert space, and let $f \colon \mathbb{N} \to H$ be a function such that $||f(n)||_H = 1$ for each $n \in \mathbb{N}$. Then the discrepancy of f is infinite.

Theorem 1.8 (Equivalent form of vector-valued Erdős discrepancy problem). Let $g: \mathbb{N} \to S^1$ be a stochastic completely multiplicative function taking values in the unit circle $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ (where we give the space $(S^1)^{\mathbb{N}}$ of functions from \mathbb{N} to S^1 the product σ -algebra). Then

$$\sup_{n} \mathbb{E} \left| \sum_{j=1}^{n} g(j) \right|^{2} = +\infty$$

Theorem 1.9 (Measure-theoretic formulation). Let (Ω, μ) be a probability space, and let $g: \Omega \to (S^1)^{\mathbb{N}}$ be a measurable function to the space $(S^1)^{\mathbb{N}}$ of functions from \mathbb{N} to S^1 , such that $g(\omega) \in (S^1)^{\mathbb{N}}$ is completely multiplicative for μ -almost every $\omega \in \Omega$ (that is to say, $g(\omega)(nm) = g(\omega)(n)g(\omega)(m)$ for all $n, m \in \mathbb{N}$ and μ -almost all $\omega \in \Omega$). Then one has

$$\sup_{n} \int_{\Omega} \left| \sum_{j=1}^{n} g(\omega)(j) \right|^{2} d\mu(\omega) = +\infty$$

Proof that Theorem 1.1 implies Theorem 1.8

If (Ω, μ) and g are as in Theorem 1.9 one takes H to be the complex Hilbert space $L^2(\Omega, \mu)$ and for each natural number n we let $f(n) \in H$ be the function

$$f(n): \omega \mapsto g(\omega)(n).$$

Proof that Theorem 1.9 implies Theorem 1.1

Observation 2. We claim that it suffices to construct, for each $X \ge 1$, a stochastic completely multiplicative function g_x taking values in S^1 such that

$$\mathbb{E}\left|\sum_{j=1}^{n} g_x(j)\right| \ll_C 1$$

for all $n \leq X$, where the implied constant is uniform in n and X, but we allow the underlying probability space defining the stochastic function g_X to depend on X.

Definition 3.[Fourier expansion]

.

$$\begin{split} F(x) &= \sum_{\xi \in (\mathbb{Z}/M\mathbb{Z})^r} \hat{F}(\xi) e\left(\frac{x \cdot \xi}{M}\right) \\ \hat{F}(\xi) &= \frac{1}{M^r} \sum_{x \in (\mathbb{Z}/M\mathbb{Z})^r} F(x) e\left(-\frac{x \cdot \xi}{M}\right) \end{split}$$

van der Corput argument

Theorem 1.10 (Logarithmically averaged nonasymptotic Elliott conjecture (Tao)). Let a_1, a_2 be natural numbers, and let b_1, b_2 be integers such that $a_1b_2 - a_2b_1 \neq 0$. Let $\varepsilon > 0$, and suppose that A is sufficiently large depending on $\varepsilon, a_1, a_2, b_1, b_2$. Let $x \geq w \geq A$, and let $g_1, g_2 \colon \mathbb{N} \to \mathbb{C}$ be multiplicative functions with $|g_1(n)|, |g_2(n)| \leq 1$ for all n, with g_1 "non-pretentious" in the sense that

$$\sum_{p \le x} \frac{1 - \Re g_1(p)\chi(p)p^{-it}}{p} \ge A$$

for all Dirichlet characters χ of period at most A, and all real numbers t with $|t| \leq Ax$. Then

$$\left|\sum_{x/w < n \le x} \frac{g_1(a_1n + b_1)g_2(a_2n + b_2)}{n}\right| \ge \varepsilon \log \omega$$

.

Proposition 1.11 (van der Corput argument). Suppose that $g: \mathbb{N} \to S^1$ is a stochastic completely multiplicative function, such that

$$\mathbb{E}\left|\sum_{j=1}^{n}g(j)\right|^{2} \leq C^{2}$$

for some finite C > 0 and all natural numbers n (thus, g would be a counterexample to Theorem 1.8). Let $\varepsilon > 0$, and suppose that X is sufficiently large depending on ε, C . Then with probability $1 - O(\varepsilon)$, one can find a (stochastic) Dirichlet character χ of period $q = O_{C,\varepsilon}(1)$ and a (stochastic) real number $t = O_{C,\varepsilon}(X)$ such that

$$\sum_{p \le X} \frac{1 - \Re g(p)\chi(p)p^{-it}}{p} \ll_{C,\varepsilon} 1$$