Approximating the rectilinear crossing number

J. Fox, J. Pach, A. Suk

1 Main result

Drawing of a graph $G \Rightarrow$ crossing number of G, notation cr(G). Straight-line drawing of $G \Rightarrow$ rectilinear crossing number of G, notation $\overline{cr}(G)$.

Theorem 1 There is a deterministic $n^{2+o(1)}$ -time algorithm for constructing a straight-line drawing of any n-vertex graph G in the plane with

 $\overline{cr}(G) + O(n^4/(\log\log n)^{\delta})$

crossing pairs of edges, where $\delta > 0$ is an absolute constant.

Corollary 1 There is a deterministic $n^{2+o(1)}$ -time algorithm for constructing a straight line drawing of an n-vertex graph G with $|E(G)| \ge \varepsilon n^2$, where $\varepsilon > 0$ is fixed, such that the drawing has at most $(1 + o(1))\overline{cr}(G)$ crossing pairs of edges.

2 Plane arrangements

Let the order type of the set of points $V = \{v_1, v_2, \ldots, v_n\}$ be the mapping $\chi : {\binom{V}{3}} \to \{+1, -1\}$ assigning each triple of V its orientation. We call all vectors $\chi^* \in \{-1, +1\}^{\binom{n}{3}}$ abstract order types and say that χ^* is realizable if there is a set of n points in plane whose order realizes χ^* .

Given k disjoint sets V_1, V_2, \ldots, V_k , a transversal of (V_1, \ldots, V_k) is any k-element sequence (v_1, v_2, \ldots, v_k) with $v_i \in V_i$. Sets V_1, V_2, \ldots, V_k has same-type transversals if all of its transversals has the same order type. A partition of a finite set V is equitable if all its parts differ in size by at most one.

Theorem 2 There is an absolute constant C such that the following holds. For each $0 < \varepsilon < 1$ and for any finite point set V in \mathbb{R}^2 there is an equitable partition $V = V_1 \cup V_2 \cup \cdots \cup V_K$, with $1/\varepsilon < K < \varepsilon^{-C}$, such that all but at most $\varepsilon {K \choose 4}$ quadruples of parts $\{V_{i_1}, V_{i_2}, V_{i_3}, V_{i_4}\}$ have same-type transversals.

Lemma 1 Given a graph G on K vertices, we can find a straight-line drawing of G with $\overline{cr}(G)$ pairs of crossing edges in $2^{O(K^3)}$ time.

Lemma 2 Let G be an edge weighted graph G on K vertices where the weight of each edge uses at most B bits. Then we can find a straight-line drawing of G with $\overline{cr}(G)$ weighted edge crossings in $2^{O(K^3)}B^2$ time.

3 Frieze–Kannan regularity lemma

Let G be an edge weighted graph with weights in [0,1] For $S, T \subset V(G)$ we define

$$e_G(S,T) = \sum_{u \in S, v \in T} w_G(uv).$$

Let G and G' be two graphs on the same vertex set V. The *cut-distance* between G and G' is defined by

$$d(G, G') = \max_{S, T \subset V} |e_G(S, T) - e_{G'}(S, T)|.$$

Generalization of crossing number to weighted graphs. Let G be an edge weighted graph G, \mathcal{D} its straight line drawing and X the set of pairs of crossing edges in \mathcal{D} . The *rectilinear crossing number* of G is defined by

$$\overline{cr}(G) = \min_{\mathcal{D}} \sum_{(uv,st) \in X} w_G(uv) w_G(s,t).$$

Let $\varepsilon > 0$ and G = (V, E) be a graph on *n* vertices. An equitable partition $\mathcal{P} : V = V_1 \cup V_2 \cup \cdots \cup V_K$ is said to be ε -Frieze-Kannan if for all $S, T \subset V$ we have

$$\left|e_G(S,T) - \sum_{1 \le i,j \le K} e_G(V_i,V_j) \frac{|V_i \cap S| |V_j \cap T|}{|V_i| |V_j|}\right| < \varepsilon n^2.$$

I

Theorem 3 There is an absolute constant c such that the following holds. For each $\varepsilon > 0$ and for any graph G = (V, E) on n vertices, there is a deterministic algorithm which finds ε -Frieze-Kannan-regular partition on V with at most $2^{\varepsilon^{-c}}$ parts which runs in $2^{2^{\varepsilon^{-c}}}n^2$ time.

Let G = (V, E) and $\mathcal{P} : V = V_1 \cup V_2 \cup \cdots \cup V_K$ be an ε -Frieze-Kannan regular partition of V from previous theorem. Let G/\mathcal{P} be a wighted graph on the set $\{1, 2, \ldots, K\}$ with weights

$$w_{G/\mathcal{P}}(ij) = \frac{e_G(V_i, V_j)}{(n/K)^2} \quad 1 \le i \ne j \le K,$$

and $G_{\mathcal{P}}$ be a weighted graph on V with weights

$$w_{G_{\mathcal{P}}}(uv) = \begin{cases} \frac{e_G(V_i, V_j)}{(n/K)^2} & \text{for } u \in V_i, v \in V_j, 1 \le i \ne j \le K, \\ 0 & \text{for } u, v \in V_i, 1 \le i \le K. \end{cases}$$

Lemma 3 Let $\varepsilon \in (0, 1/2)$ and let G and G' be two n-vertex edge-wighted graphs on the same vertex set V. If $d(G, G') < \varepsilon n^2$ then

$$\left|\overline{cr}(G) - \overline{cr}(G')\right| \le \varepsilon^{1/4C} n^4,$$

where C is an absolute constant from Theorem 2.

The blow-up graph G[m] of an edge weighted graph G on the set $\{1, 2, \ldots, K\}$ is a graph obtained from G by replacing each vertex i by an independent set U_i of order m, where each weight between U_i and U_j has weight $w_G(ij), i \neq j$.

Lemma 4 Let G be a graph and G[m] be its blow-up. Then

$$0 \le \overline{cr}(G[M]) - m^4 \overline{cr}(G) \le K^3 m^4.$$

4 The algorithm

- 1. Take any G on n vertices. Set $\varepsilon = (\log \log n)^{-1/2c}$, where c is a constant from Theorem 3. We apply Theorem 3 and obtain an equitable partition $\mathcal{P}: V = V_1 \cup V_2 \cup \cdots \cup V_K$ such that $1/\varepsilon < K < 2^{\sqrt{\log \log n}}$. That can be done in $n^{2+o(1)}$.
- 2. We consider edge wighted graph G/\mathcal{P} on [K] such that $w_{G/\mathcal{P}}(ij) = \frac{e_G(V_i, V_j)}{(n/K)^2}$. Then algorithm from Lemma 2 finds a drawing of G/\mathcal{P} with crossing number $\overline{cr}(G/\mathcal{P})$. Let U be the point set for such drawing. This can be done in $2^{O(K^3)} = n^{o(1)}$) time.
- 3. We draw G = (V, E). Let L be the set of lines spanned by U and δ minimal distance of L and U. Such δ uses at most $2^{K \log K}$ bits. Set $D_i = (v_i, \delta/10)$ disc around v_i and choose points of V_i in D_i such that the point set V is in general position. Then any quadruple of points from different V_i 's has same type transversals.
- 4. Finally we draw all edges of G in $O(n^2)$ time and return the drawing of G.