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1 Main result

Let X be a set of n points of norm at most 1 in the Euclidean space R¥, and suppose € > 0. An
e-distance sketch for X is a data structure that, given any two points of X enables one to recover
the square of the Euclidean distance between them, and their inner product, up to an additive
error of e.

Let f(n,k,€) denote the minimum possible number of bits of such a sketch.

Theorem 1. For all n and no%g <€ <0.1 the function f(n,k,¢) satisfies the following
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2 Definitions

2.1 Gram matrices

For n vectors wi,...,w, the Gram matrix G(ws,...,w,) is the n by n matrix G given by
G(i,7) = (w;,wj). We say that two Gram matrices Gy, G2 are e-separated if there are two
indices 7 # j so that |G1(7,7) — Ga(i,7)| > €.

Let G be a maximal (with respect to containment) set of e-separated Gram matrices of ordered
sequences of n vectors wy, ..., w, in R, where the norm of each vector w; is at most k. Then by
maximality of G, for every Gram matrix M of vectors of norm at most k£ in R™ there is a member
of G in which all inner product of pairs of distinct points are within € of the corresponding inner
products in M. Therefore we can use an index of an appropriate member of G as a sketch for
M, requiring log |G| bits.

2.2 J-nets

For 0 < 0 < 1/4 and for k > 1 a §-net, denoted by N (k,d), be the set of all vectors of Euclidean
norm at most 1 in which every coordinate is an integral multiple of %. Given a vector in the
unit ball in R* we can round it to a vector in the net that lies within distance §/2 from it by

simply rounding each coordinate.
Each point of N(k,d) can be represented by at most klog(1/d)+ 2k bits as the size of N(k, )
has size (1/6)*20(k).



3 Upper bounds

Lemma 2. For l"ﬁ# <k<mn, f(n,k,56) =0 (%)

€

Use Johnson-Lindenstrauss Lemma to reduce dimension to C 106# — encode inner products
using maximal set G of e-separated Gram matrices — show that G is "small”.

Lemma 3. Forlogn <k < logn f(n,k,4¢) = O (nk log (2 + log"))

€ 2k

Similar to Lemma 2, except the initial usage of Johnson-Lindenstrauss Lemma.

4 Algorithmic proof

For % < k < n, apply Johnson-Lindenstrauss Lemma to m = 40logn/e?. Then for w; € X
round each coordinate to an integral multiple of 1/1/m — random vector V;. Suppose the j-th

coordinate of w; is f;%’ for s € Z and 0 < p < 1, then

s+1

Vi(j) = 7 With probability 1 —p,
o with probability p.

For logn > k < 4016#, let 0 be such that k = 4051&. Round similarly as before, this time
to points of N(k,0).

5 Lower bounds
Lemma 4. If k = 6%logn/(200€?) where 2¢ < § < 1/2, then f(n,k,¢/2) = Q(knlog(1/5)).

Fix maximal set of point N in the unit ball with pairwise distances at least § — find set R,
|R| = n/2 such that for any N1, No C N with |N;| = |Nao| = n/2, the matrices G(R, N1) and
G(R, N3) are e-separated — use size of N to bound f(n,k,€) from below.

6 Known results

Theorem 5 (Johnson-Lindenstrauss Lemma). Let X C RF,|X| =n and 0 < € < 1/2. Then
there exists map f: X — R™ for some m = O(*&™) such that
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Va,y € X, (1= e)llz — ylI* < [If (@) = fF()I* < A+ e)llz — ylI?

Moreover, there is a probabilistic algorithm that outputs the map in time O(k’f#).

Theorem 6 (Hoeffding’s Inequality). If X1,..., X, are independent and a; < X; < b; for every
i, then fort >0
Pr X — > t] < e 2/ Elbima)?,



