Distance Graphs and Sets of Positive Upper Density in \mathbb{R}^{d}

N. Lyall, A Magyar

1 Introduction

Let $A \subset \mathbb{R}^{d}$. The u pper Banach density of A is defined by

$$
\delta^{*}(A)=\lim _{N \rightarrow \infty} \sup _{t \in \mathbb{R}^{d}} \frac{\left|A \cap\left(t+Q_{N}\right)\right|}{\left|Q_{N}\right|}
$$

where $|\cdot|$ is a standard Lebesgue measure and $Q_{N}=[-N / 2, N / 2]^{d}$.
Theorem 1 Let $\Delta_{k} \subset \mathbb{R}^{d}$ be a fixed collection of $k+1$ points in general position. If $A \subset \mathbb{R}^{d}$ has a positive upper Banach density and $d \geq k+1$, then there exist a threshold $\lambda_{0}=\lambda_{0}\left(A, \Delta_{k}\right)$ such that A contains an isometric copy of $\lambda \cdot \Delta_{k}$ for all $\lambda \geq \lambda_{0}$.

A distance graph $\Gamma=\Gamma(V, E)$ is a connected finite graph with vertex set $V \subset \mathbb{R}^{d}$. Distance graph Γ is k-degenerate if each of its subgraphs contains a vertex with a degree at most k. In any k-degenerate distance graph Γ. We can order the vertices such that $V=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ and

$$
V_{j}:=\left\{v_{i}:\left(v_{i}, v_{j}\right) \in E, 0 \leq i<j\right\}
$$

satisfies $\left|V_{j}\right| \leq k$. A distance graph Γ is p roper if for ever $1 \leq j \leq n$, the set $V_{j} \cup v_{j}$ is in general position.
Theorem 2 Let $\Gamma=\Gamma(V, E)$ be a proper k-degenerate distance graph and $d \geq k+1$.
(i) If $A \subset \mathbb{R}^{d}$ has a positive upper Banach density, then there exist $\lambda_{0}=\lambda_{0}(A, \Gamma)$ such that A contains an isometric copy of $\lambda \cdot \Gamma$ for all $\lambda \geq \lambda_{0}$.
(ii) If $A \subset[0,1]^{d}$ with $|A|>0$, then A contains an isometric copy of $\lambda \cdot \Gamma$ for all λ in some interval of length at least $\exp \left(-C_{\Gamma}|A|^{C|V|}\right)$.

2 Useful stuff

Let Γ be a fixed proper k-degenerate distance graph with vertex set $V=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ and $k \leq d-1$. For each $\left(v_{i}, v_{j}\right) \in E$ we set $t_{i j}=\left|v_{i}-v_{j}\right|^{2}$. We define the configuration space

$$
S_{\Gamma}:=\left\{\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{d(n+1)}: x_{0}=0 \text { and }\left|x_{i}-x_{j}\right|^{2}=t_{i j} \text { for all }\left(v_{i}, v_{j}\right) \in E\right\}
$$

Each of the spheres

$$
S_{j}:=\left\{x \in \mathbb{R}^{d}:\left|x-x_{i}\right|^{2}=t_{i j} \text { for all } x_{i} \in X_{j}\right\}
$$

have dimension $d-\left|X_{j}\right|$.
For any $0<\lambda \ll 1$ and functions $f_{0}, f_{1}, \ldots, f_{n}:[0,1]^{d} \rightarrow \mathbb{R}$ with $d \geq k+1$ we define a localized counting function as

$$
T_{\Gamma}\left(f_{0}, f_{1}, \ldots, f_{n}\right)(\lambda):=\iint \cdots \int f_{0}(x) f_{1}\left(x-\lambda x_{1}\right) \cdots f_{n}\left(x-\lambda x_{n}\right) d \mu_{n}\left(x_{n}\right) \cdots d \mu_{1}\left(x_{1}\right) d x
$$

Let $0<L \ll 1$ and $f:[0,1]^{d} \rightarrow \mathbb{R}$. We define $U^{1}(L)$-norm as

$$
\|f\|_{U^{1}(L)}=\left\|f \star \varphi_{L}\right\|_{2},
$$

where $\varphi_{L}(x)=L^{-d} \varphi\left(L^{-1} x\right)$ and $\varphi=1_{[-1 / 2,1 / 2]^{d}}$ is an indicator function.
Proposition 1 Let $0<\varepsilon, \lambda \ll 1$. For any $L<\varepsilon^{6} \lambda, 0 \leq m \leq n$ and functions $f_{0}, f_{1}, \ldots, f_{m}:[0,1]^{d} \rightarrow[-1,1]$ we have that

$$
\left|T_{\Gamma}\left(f_{0}, f_{1}, \ldots, f_{m}, 1, \ldots, 1\right)(\lambda)\right| \leq\left\|f_{m}\right\|_{U^{1}(L)}+O_{\Gamma}(\varepsilon)
$$

where $1=1_{[0,1]^{d}}$.
Let $f_{A}=1_{A}-\alpha 1_{[0,1]^{d}}$.
Corollary 1 Let Γ be a proper k-degenerate distance graph with $n+1$ vertices in \mathbb{R}^{d} with $d \geq k+1$. Let $\alpha \in(0,1)$ and $0<\lambda \leq \varepsilon<_{\Gamma} \alpha^{n+1}$. If $A \subset[0,1]^{d}$ with $|A|=\alpha$ satisfies $\left\|f_{A}\right\|_{U^{1}\left(\varepsilon^{6} \lambda\right)} \ll \varepsilon$, then

$$
T_{\Gamma}\left(1_{A}, 1_{A}, \ldots, 1_{A}\right)(\lambda) \geq \frac{c_{0}}{2} \alpha^{n+1}
$$

where

$$
c_{0}=\iint \cdots \int d \mu_{n}\left(x_{n}\right) \cdots d \mu_{1}\left(x_{1}\right) d x
$$

