Three conjectures in extremal spectral graph theory (Tait, Tobin)

Intro

Observation 1. Let A be an adjacency matrix of a graph G with eigenvalues $\lambda_1 \ge \lambda_2 \ge \dots, \lambda_n$. Let v be an eigenvector corresponding to λ_1 scaled such that the maximum entry is equal to 1. Let $x \in V(G)$ be an arbitrary vertex such that $v_x = 1$.

$$\lambda_1 \mathbf{v}_u = \sum_{w \sim u} \mathbf{v}_w \tag{1}$$

Equation 1 applied to u = x:

$$\lambda_1 = \sum_{y \sim x} \mathbf{v}_y \tag{2}$$

$$\lambda_1^2 = \sum_{y \sim x} \sum_{z \sim y} \mathbf{v}_z = \sum_{y \sim x} \sum_{\substack{z \sim y \\ z \in N(x)}} \mathbf{v}_z + \sum_{y \sim x} \sum_{\substack{z \sim y \\ z \notin N(x)}} \mathbf{v}_z \le 2e\left(N(x)\right) + e\left(N(x), V(G) \setminus N(x)\right)$$
(3)

Observation 2. [Rayleigh quotient characterization of λ_1]

$$\lambda_1 = \max_{oldsymbol{z}
eq 0} rac{oldsymbol{z}^T A oldsymbol{z}}{oldsymbol{z}^T oldsymbol{z}}$$

Theorem 1. [Mantel's Theorem] Let G be a triangle-free graph on n vertices. Then G contains at most $\lfloor n^2/4 \rfloor$ edges. Equality occurs if and only if $G = K_{\lfloor n/2 \rfloor \lceil n/2 \rceil}$.

Theorem 2. [Stanley's Bound] Let G be a graph with m edges. Then

$$\lambda_1 \le \frac{1}{2} \left(-1 + \sqrt{1+8m} \right).$$

Equality occurs iff G is a clique and isolated vertices.

Outerplanar graphs of maximum spectral radius

Definition 1. Spectral radius of a square matrix is $\rho(A) = \max\{|\lambda_1|, \dots, |\lambda_n|\}$.

Theorem 7. The outerplanar graph on n vertices of maximum spectral radius is one vertex connected with every vertex of the path P_{n-1} , that is $K_1 + P_{n-1}$ where + represents the graph join operation.

Lemma 3. $\lambda_1 > \sqrt{n-1}$.

Lemma 4. For any vertex u, we have $d_u > \mathbf{v}_u n - 11\sqrt{n}$.

Lemma 5. We have $d_x > n - 11\sqrt{n}$ and for every other vertex u, $\mathbf{v}_u < 23/\sqrt{n}$ for sufficiently large n (let $C_1 = 23$).

Lemma 6. Let $B = V(G) \setminus (N(x) \cup \{x\})$. Then

$$\sum_{z \in B} \mathbf{v}_z < C_2 / \sqrt{n}$$

for some constant C_2 .