Three conjectures in extremal spectral graph theory (Tait, Tobin)

Intro

Observation 1. Let A be an adjacency matrix of a graph G with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq, \ldots, \lambda_{n}$. Let v be an eigenvector corresponding to λ_{1} scaled such that the maximum entry is equal to 1 . Let $x \in V(G)$ be an arbitrary vertex such that $v_{x}=1$.

$$
\begin{equation*}
\lambda_{1} \mathbf{v}_{u}=\sum_{w \sim u} \mathbf{v}_{w} \tag{1}
\end{equation*}
$$

Equation 1 applied to $u=x$:

$$
\begin{gather*}
\lambda_{1}=\sum_{y \sim x} \mathbf{v}_{y} \tag{2}\\
\lambda_{1}^{2}=\sum_{y \sim x} \sum_{z \sim y} \mathbf{v}_{z}=\sum_{y \sim x} \sum_{\substack{z \sim y \\
z \in N(x)}} \mathbf{v}_{z}+\sum_{\substack{y \sim x \\
y \neq ~}} \sum_{\substack{z \sim y \\
z \notin N(x)}} \mathbf{v}_{z} \leq 2 e(N(x))+e(N(x), V(G) \backslash N(x)) \tag{3}
\end{gather*}
$$

Observation 2.[Rayleigh quotient characterization of λ_{1}]

$$
\lambda_{1}=\max _{z \neq 0} \frac{\boldsymbol{z}^{T} A \boldsymbol{z}}{\boldsymbol{z}^{T} \boldsymbol{z}}
$$

Theorem 1.[Mantel's Theorem] Let G be a triangle-free graph on n vertices. Then G contains at most $\left\lfloor n^{2} / 4\right\rfloor$ edges. Equality occurs if and only if $G=K_{\lfloor n / 2\rfloor\lceil n / 2\rceil}$.
Theorem 2.[Stanley's Bound] Let G be a graph with m edges. Then

$$
\lambda_{1} \leq \frac{1}{2}(-1+\sqrt{1+8 m})
$$

Equality occurs iff G is a clique and isolated vertices.

Outerplanar graphs of maximum spectral radius

Definition 1. Spectral radius of a square matrix is $\rho(A)=\max \left\{\left|\lambda_{1}\right|, \ldots,\left|\lambda_{n}\right|\right\}$.
Theorem 7. The outerplanar graph on n vertices of maximum spectral radius is one vertex connected with every vertex of the path P_{n-1}, that is $K_{1}+P_{n-1}$ where + represents the graph join operation.
Lemma 3. $\lambda_{1}>\sqrt{n-1}$.
Lemma 4. For any vertex u, we have $d_{u}>\mathbf{v}_{u} n-11 \sqrt{n}$.
Lemma 5. We have $d_{x}>n-11 \sqrt{n}$ and for every other vertex u, $\mathbf{v}_{u}<23 / \sqrt{n}$ for sufficiently large n (let $C_{1}=23$).
Lemma 6. Let $B=V(G) \backslash(N(x) \cup\{x\})$. Then

$$
\sum_{z \in B} \mathbf{v}_{z}<C_{2} / \sqrt{n}
$$

for some constant C_{2}.

