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What is welfare? A large bipartite matching between players (bidders)
and items (goods)!

Communication model

There is an bipartite graph G between a set of n players and a set
of m items. Each player knows only a subset of items adjacent to
him. There is a referee (central planner) that is supposed to compute
a matching as large as possible, but cannot see G at all. The players
communicate among each other using the following model.

D (Multiparty communication model with a shared blackboard): Play-
ers communicate in a fixed number of rounds r using a protocol 7. In
each round each player writes at most £ bits on the blackboard and
they do it simultaneously.

If 7 is deterministic, then each message of a player depends only on
the private input of the player and the content of the blackboard from
previous rounds. In a randomized 7 the message may further depend
on some random bits (private or public).

After the end of the r-th round, referee computes a matching M based
only on the content of the blackboard (and some random bits if 7 is
randomized). Referee may output illegal pairs, i.e., pairs that are not
edges in G.

Let M7 (G) be the output of protocol m on graph G. Then the size of
the computed matching is |[Mx(G) N E(G)|.

D(Approximate Matchings): We say that a protocol m computes an
a-approzimate matching for G (a > 1) if |Mr(G)NE(G)| > é|M(G)|
where M (G) is a maximum matching in G.

Similarly, when the input graph G is distributed according to some
distribution u, we say that the approximation ratio of 7 is « if
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Parameters: r = # of round, and ¢ = # of bits in a message (by a
players in one round).

Result

T: For every r > 1, there exist a distribution p, such that the ap-
proximation ratio of any (deterministic or randomized) protocol is
Q5 Y if e < nl/5T

By averaging (Yao’s) principle, we may consider deterministic proto-
cols only.

Hard distribution pu,

D(Recursive definition of p,): Fix some £. For r = 0, G° consists
of a set of ng players U? = {b1,...,bng} and a set of mg items
VO = {j1...,5mo}, such that ng = mo = £5. EC is then obtained by
selecting a random permutation o €r Sy5 and connecting (bi,jg(i))
by an edge.

For any = > 0, the distribution pry; over GTH1 =
(Urtt,yr+t E”Ll) is defined as follows:
Vertices:
4
e The set of players is U1 := U?:Tl B; where |B;| = n,. Thus,
npy1 =nl
e The set of items is V7! : Un e n”T where |Tj| = m.

Thus, my41 = (nt 4+ £-n2) - m,.
Edges:

e Let dr be the degree of each player in the graph G” (it is the
same for all).

e First choose £ - n2 random indices {a1,az,... ag‘nz} from [nd +

¢-n2], and a random permutation o : [ni] — [n} + £ n2]\
{a1,az,... al»n’ﬁ}'

e FEach player u € B; is connected to d, random items in each
one of the blocks T4, ,Tay, - - Ta 2 using independent ran-

domness for each of the blocks and for each player.
e The entire block B; is further connected to the entire block T, )
using an independent copy of the distribution .

Main theorem

Since a graph generated by g, has a perfect matching, it suffices to
prove the following:

T(Main): For every r > 0 expected size of matching produced by an

1-1 /5T+1
r-round protocol 7 under distribution pu, is at most 5n,

D: The ¢; (statistical) distance between two distributions in the same
probability space is denoted |u — v| := % Y e lu(a) —v(a)]

Fact: Let p and v be two probability distributions over a non-
negative random variable X, whose value is bounded by X;q2. Then
Ey[X] S Eu[X]+ |1 —v] - Xmaz-

Notation

e For a vector random variable X = X;Xs...Xs, we use
the shorthands X<; and X_; to denote X;X3...X; and
X1 X0 o X1, Xig1,oon e X respectively

e Each block B; of players is connected to exactly £-n2 + 1 blocks
of items whose indices we denote by

Z; :={o(i),a1,az,... az,ng}.

e For each By, let 7; : Z; —> [¢-n2 + 1] be the bijection that
maps any index in Z; to its location in the sorted list of Z; (i.e.,
7';1 (1) is the smallest index in Z;, 7';1 (2) is the second smallest
index in Z; and so forth).

e G is the (induced) subgraph of G = G™! on the sets
(BZ,T 1 >) for each j € [£-n2 + 1].

e For a player u € B;, let G“ = (u, T -1

subgraph of G on the sets (u, T -1

G )) denote the (induced)

(J))

o Let J; := 7;(0(i)) denote the index (in Z;) of the “hidden graph”
Gy, = (Bi;To(s))- For brevity we write G(J;) := Gy,

e We wuse the shorthands J := Ji,...,J4 and I :=
T1,22, -5 s

o Let MB = M1 M3, , Mp" denote the (concatenated) mes-
sages sent by all of the players in a block Bj; in the first round
of 7

o Let ’l,Z);ﬁ = (G(Jl) | MBi = mBiin = ji,Ii) denote the distri-
bution of the “hidden graph” G(J;) conditioned on Mp,,Z; and
Ji.

e For every block B; and every player u € B;, let
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£-nj £-ny

G(Ty) == | Bi, | Tu, . GY= |, | T
j=1 j=1

denote the induced subgraph on the block B; (on the player
u € B;) and all “fooling blocks” respectively.

any subset s C
(UzES B, U a]) and use the convention T := Tj, 4.
né) denotes the

e In what follows7 GJ) = G(J1)G(J2)...G(J,
(concatenation of the) “hidden” graphs.

e For 3], we write G(Ts) :=

Three key lemmas

L(Conditional subgraph decomposition):

L ((Gp,GEy.. o, GEY | M1, G(J1),3,T) ~ X (G4[M1,GY,,3,T).
u€ By
2. (GW),G(T) | M1,3,T) ~ X (G(J;)G(Ty) | Mp,,J,T).
i€[nd]

L(3% and pu, are close): For every i € [n?],

. 1
B [lor —pel] <4/ —-
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L(r-round Embedding):

E E [Nrjmq (G, G(J1))] < 5n - ZA1/2
Tt G~
+ G| (G(J1),m1,d,T)



A bit of information theory

D(Relative entropy): For two distributions p and v in the same prob-
ability space, the Kullback-Leiber divergence (or relative entropy) be-
tween p and v is defined as

Du(@)lv(a) =, [1oa 2], ()

an %% v(a)

L(Pinsker’s inequality): For any two distributions p and v,

|u(a) —v(a)* < % D (p(a)l[v(a)) -

D(Conditional Mutual Information): Let A,B,C be jointly dis-
tributed random variables. The Mutual Information between A and
B conditioned on C is

p(albe)
p(alc)

I(A;B|C) := E D(u(blac)||p(ble)) = Y p(abe)log
u(ca) a,b,c
Fact: I(A;C|D) < H(A|D) < H(A) < log|supp(4)],
Fact(Chain rule for mutual information): Let A, B,C,D be jointly

distributed random variables. Then I(AB;C|D) = I(A;C|D) +
I(B; C|AD).

Fact(Conditioning on independent variables increases information):
Let A, B, C, D be jointly distributed random variables. If [(A; D|C) =
0, then it holds that I(A; B|C) < I(A; B|CD).

Fact: Let A,B,C,D be jointly distributed random variables such
that I(B; D|AC) = 0. Then it holds that I(A; B|C) > I(A; B|CD).

Fact(Data processing inequality): Let X — Y — Z be a Markov
chain (I(X; Z|Y) =0). Then I(X;Z2) < I(X;Y).

An important special case is when Z is a deterministic function of Y.



