Welfare Maximization with Limited Interaction

Noga Alon, Noam Nisan, Ran Raz, Omri Weinstein Presented by Pavel Veselý
Combinatorics and Graph Theory PhD Seminar, 2015/16, MFF UK
What is welfare? A large bipartite matching between players (bidders) and items (goods)!

Communication model

There is an bipartite graph G between a set of n players and a set of m items. Each player knows only a subset of items adjacent to him. There is a referee (central planner) that is supposed to compute a matching as large as possible, but cannot see G at all. The players communicate among each other using the following model.
D(Multiparty communication model with a shared blackboard): Players communicate in a fixed number of rounds r using a protocol π. In each round each player writes at most ℓ bits on the blackboard and they do it simultaneously.
If π is deterministic, then each message of a player depends only on the private input of the player and the content of the blackboard from previous rounds. In a randomized π the message may further depend on some random bits (private or public).

After the end of the r-th round, referee computes a matching M based only on the content of the blackboard (and some random bits if π is randomized). Referee may output illegal pairs, i.e., pairs that are not edges in G.
Let $M_{\pi}(G)$ be the output of protocol π on graph G. Then the size of the computed matching is $\left|M_{\pi}(G) \cap E(G)\right|$.

D(Approximate Matchings): We say that a protocol π computes an α-approximate matching for $G(\alpha \geq 1)$ if $\left|M_{\pi}(G) \cap E(G)\right| \geq \frac{1}{\alpha} \cdot|M(G)|$ where $M(G)$ is a maximum matching in G.
Similarly, when the input graph G is distributed according to some distribution μ, we say that the approximation ratio of π is α if

$$
\underset{G \sim \mu}{\mathbb{E}}\left[\left|M_{\pi}(G) \cap E(G)\right|\right] \geq \frac{1}{\alpha} \cdot \underset{G \sim \mu}{\mathbb{E}}[|M(G)|] .
$$

Parameters: $r=\#$ of round, and $\ell=\#$ of bits in a message (by a players in one round).

Result

T: For every $r \geq 1$, there exist a distribution μ_{r} such that the approximation ratio of any (deterministic or randomized) protocol is $\Omega\left(n^{1 / 5^{r+1}}\right)$ if $\ell \leq n^{1 / 5^{r+1}}$.
By averaging (Yao's) principle, we may consider deterministic protocols only.

Hard distribution μ_{r}

\mathbf{D} (Recursive definition of μ_{r}): Fix some ℓ. For $r=0, G^{0}$ consists of a set of n_{0} players $U^{0}=\left\{b_{1}, \ldots, b_{n_{0}}\right\}$ and a set of m_{0} items $V^{0}=\left\{j_{1} \ldots, j_{m_{0}}\right\}$, such that $n_{0}=m_{0}=\ell^{5} . E^{0}$ is then obtained by selecting a random permutation $\sigma \in_{R} S_{\ell^{5}}$ and connecting $\left(b_{i}, j_{\sigma(i)}\right)$ by an edge.
For any $r \underset{\text { r }}{\geq} 0$, the distribution μ_{r+1} over $G^{r+1}=$ $\left(U^{r+1}, V^{r+1}, E^{r+1}\right)$ is defined as follows:
Vertices:

- The set of players is $U^{r+1}:=\bigcup_{i=1}^{n_{r}^{4}} B_{i}$ where $\left|B_{i}\right|=n_{r}$. Thus, $n_{r+1}=n_{r}^{5}$
- The set of items is $V^{r+1}:=\bigcup_{j=1}^{n_{r}^{4}+\ell \cdot n_{r}^{2}} T_{j}$ where $\left|T_{j}\right|=m_{r}$. Thus, $m_{r+1}=\left(n_{r}^{4}+\ell \cdot n_{r}^{2}\right) \cdot m_{r}$.
Edges:
- Let d_{r} be the degree of each player in the graph G^{r} (it is the same for all).
- First choose $\ell \cdot n_{r}^{2}$ random indices $\left\{a_{1}, a_{2}, \ldots a_{\ell \cdot n^{2}}\right\}$ from $\left[n_{r}^{4}+\right.$ $\left.\ell \cdot n_{r}^{2}\right]$, and a random permutation $\sigma:\left[n_{r}^{4}\right] \longrightarrow\left[n_{r}^{4}+\ell \cdot n_{r}^{2}\right]$ $\left\{a_{1}, a_{2}, \ldots a_{\ell \cdot n_{r}^{2}}\right\}$.
- Each player $u \in B_{i}$ is connected to d_{r} random items in each one of the blocks $T_{a_{1}}, T_{a_{2}}, \ldots, T_{a_{\ell \cdot n_{r}^{2}}}$, using independent randomness for each of the blocks and for each player.
- The entire block B_{i} is further connected to the entire block $T_{\sigma(i)}$ using an independent copy of the distribution μ_{r}

Main theorem

Since a graph generated by μ_{r} has a perfect matching, it suffices to prove the following:
\mathbf{T} (Main): For every $r \geq 0$ expected size of matching produced by an r-round protocol π under distribution μ_{r} is at most $5 n_{r}^{1-1 / 5^{r+1}}$
D: The ℓ_{1} (statistical) distance between two distributions in the same probability space is denoted $|\mu-\nu|:=\frac{1}{2} \cdot \sum_{a}|\mu(a)-\nu(a)|$
Fact: Let μ and ν be two probability distributions over a nonnegative random variable X, whose value is bounded by $X_{\max }$. Then $\mathbb{E}_{\nu}[X] \leq \mathbb{E}_{\mu}[X]+|\mu-\nu| \cdot X_{\max }$.

Notation

- For a vector random variable $X=X_{1} X_{2} \ldots X_{s}$, we use the shorthands $X_{\leq i}$ and X_{-i} to denote $X_{1} X_{2} \ldots X_{i}$ and $X_{1} X_{2} \ldots X_{i-1}, X_{i+1}, \ldots \ldots X_{s}$ respectively
- Each block B_{i} of players is connected to exactly $\ell \cdot n_{r}^{2}+1$ blocks of items whose indices we denote by

$$
\mathcal{I}_{i}:=\left\{\sigma(i), a_{1}, a_{2}, \ldots a_{\ell \cdot n_{r}^{2}}\right\}
$$

- For each B_{i}, let $\tau_{i}: \mathcal{I}_{i} \longrightarrow\left[\ell \cdot n_{r}^{2}+1\right]$ be the bijection that maps any index in \mathcal{I}_{i} to its location in the sorted list of \mathcal{I}_{i} (i.e., $\tau_{i}^{-1}(1)$ is the smallest index in $\mathcal{I}_{i}, \tau_{i}^{-1}(2)$ is the second smallest index in \mathcal{I}_{i} and so forth).
- G_{j}^{i} is the (induced) subgraph of $G=G^{r+1}$ on the sets $\left(B_{i}, T_{\tau_{i}^{-1}(j)}\right)$, for each $j \in\left[\ell \cdot n_{r}^{2}+1\right]$.
- For a player $u \in B_{i}$, let $G_{j}^{u}=\left(u, T_{\tau_{i}^{-1}(j)}\right)$ denote the (induced) subgraph of G on the sets $\left(u, T_{\tau_{i}^{-1}(j)}\right)$
- Let $J_{i}:=\tau_{i}(\sigma(i))$ denote the index (in \mathcal{I}_{i}) of the "hidden graph" $G_{J_{i}}^{i}=\left(B_{i}, T_{\sigma(i)}\right)$. For brevity we write $G\left(J_{i}\right):=G_{J_{i}}^{i}$.
- We use the shorthands $\mathbf{J}:=J_{1}, \ldots, J_{n_{r}^{4}}$ and $\mathcal{I}:=$ $\mathcal{I}_{1}, \mathcal{I}_{2}, \ldots, \mathcal{I}_{n_{r}^{4}}$.
- Let $M_{B_{i}}=M_{B_{i}}^{1} M_{B_{i}}^{2}, \ldots, M_{B_{i}}^{n_{r}}$ denote the (concatenated) messages sent by all of the players in a block B_{i} in the first round of π
- Let $\psi_{r}^{i}:=\left(G\left(J_{i}\right) \mid M_{B_{i}}=m_{B_{i}}, J_{i}=j_{i}, \mathcal{I}_{i}\right)$ denote the distribution of the "hidden graph" $G\left(J_{i}\right)$ conditioned on $M_{B_{i}}, \mathcal{I}_{i}$ and J_{i}.
- For every block B_{i} and every player $u \in B_{i}$, let

$$
G\left(T_{i}\right):=\left(B_{i}, \bigcup_{j=1}^{\ell \cdot n_{r}^{2}} T_{a_{j}}\right) \quad, \quad G_{T}^{u}:=\left(u, \bigcup_{j=1}^{\ell \cdot n_{r}^{2}} T_{a_{j}}\right)
$$

denote the induced subgraph on the block B_{i} (on the player $u \in B_{i}$) and all "fooling blocks" respectively.

- For any subset $S \subseteq\left[n_{r}^{4}\right]$, we write $G\left(T_{S}\right) \quad:=$ $\left(\bigcup_{i \in S} B_{i}, \bigcup_{j=1}^{\ell \cdot n_{r}^{2}} T_{a_{j}}\right)$ and use the convention $\mathbf{T}:=T_{\left[n_{r}^{4}\right]}$.
- In what follows, $G(\mathbf{J}):=G\left(J_{1}\right) G\left(J_{2}\right) \ldots G\left(J_{n_{r}^{4}}\right)$ denotes the (concatenation of the) "hidden" graphs.

Three key lemmas

L (Conditional subgraph decomposition):

1. $\left(\left(G_{T}^{1}, G_{T}^{2}, \ldots, G_{T}^{n_{r}}\right) \mid M_{1}, G\left(J_{1}\right), \mathbf{J}, \mathcal{I}\right) \sim \underset{u \in B_{1}}{\times}\left(G_{T}^{u} \mid M_{1}, G_{J_{1}}^{u}, \mathbf{J}, \mathcal{I}\right)$.
2. $\quad\left(G(\mathbf{J}), G(\mathbf{T}) \mid M_{1}, \mathbf{J}, \mathcal{I}\right) \sim \underset{i \in\left[n_{r}^{4}\right]}{\times}\left(G\left(J_{i}\right) G\left(T_{i}\right) \mid M_{B_{i}}, \mathbf{J}, \mathcal{I}\right)$.
$\mathrm{L}\left(\psi_{r}^{i}\right.$ and μ_{r} are close): For every $i \in\left[n_{r}^{4}\right]$,

$$
\underset{m_{B_{i}}, \mathcal{I}_{i}, j_{i}}{\mathbb{E}}\left[\left|\psi_{r}^{i}-\mu_{r}\right|\right] \leq \sqrt{\frac{1}{n_{r}}}
$$

L(r-round Embedding):

$$
\left.\underset{\substack{G\left(J_{1}\right) \sim \mu_{r} \\ \mathbf{J}, \mathcal{I}_{\mathcal{I}} \\ \mathbb{E}}}{\mathbb{E}}\left[N_{\pi \mid m_{1}}\left(G, G\left(J_{1}\right), m_{1}, \mathbf{J}, \mathcal{I}\right)\right)\right] \leq 5 n_{r} \cdot\left(\sum_{k=0}^{r-1} \Delta_{k}^{1 / 2}\right)+1 .
$$

A bit of information theory

D(Relative entropy): For two distributions μ and ν in the same probability space, the Kullback-Leiber divergence (or relative entropy) be tween μ and ν is defined as

$$
\mathbb{D}(\mu(a) \| \nu(a)):=\underset{a \sim \mu}{\mathbb{E}}\left[\log \frac{\mu(a)}{\nu(a)}\right] .
$$

L (Pinsker's inequality): For any two distributions μ and ν,

$$
|\mu(a)-\nu(a)|^{2} \leq \frac{1}{2} \cdot \mathbb{D}(\mu(a) \| \nu(a))
$$

\mathbf{D} (Conditional Mutual Information): Let A, B, C be jointly distributed random variables. The Mutual Information between A and B conditioned on C is
$I(A ; B \mid C):=\underset{\mu(c a)}{\mathbb{E}} \mathbb{D}(\mu(b \mid a c) \| \mu(b \mid c))=\sum_{a, b, c} \mu(a b c) \log \frac{\mu(a \mid b c)}{\mu(a \mid c)}$.
Fact: $I(A ; C \mid D) \leq H(A \mid D) \leq H(A) \leq \log |\operatorname{supp}(A)|$,
Fact(Chain rule for mutual information): Let A, B, C, D be jointly distributed random variables. Then $I(A B ; C \mid D)=I(A ; C \mid D)+$ $I(B ; C \mid A D)$.

Fact(Conditioning on independent variables increases information): Let A, B, C, D be jointly distributed random variables. If $I(A ; D \mid C)=$ 0 , then it holds that $I(A ; B \mid C) \leq I(A ; B \mid C D)$.

Fact: Let A, B, C, D be jointly distributed random variables such that $I(B ; D \mid A C)=0$. Then it holds that $I(A ; B \mid C) \geq I(A ; B \mid C D)$.

Fact(Data processing inequality): Let $X \rightarrow Y \rightarrow Z$ be a Markov chain $(I(X ; Z \mid Y)=0)$. Then $I(X ; Z) \leq I(X ; Y)$.

An important special case is when Z is a deterministic function of Y.

