Welfare Maximization with Limited Interaction

Noga Alon, Noam Nisan, Ran Raz, Omri Weinstein

Presented by Pavel Veselý Combinatorics and Graph Theory PhD Seminar, 2015/16, MFF UK

What is welfare? A large bipartite matching between players (bidders) and items (goods)!

Communication model

There is an bipartite graph G between a set of n players and a set of m items. Each player knows only a subset of items adjacent to him. There is a referee (central planner) that is supposed to compute a matching as large as possible, but cannot see G at all. The players communicate among each other using the following model.

D(Multiparty communication model with a shared blackboard): Players communicate in a fixed number of rounds r using a protocol π . In each round each player writes at most ℓ bits on the blackboard and they do it *simultaneously*.

If π is deterministic, then each message of a player depends only on the private input of the player and the content of the blackboard from previous rounds. In a randomized π the message may further depend on some random bits (private or public).

After the end of the r-th round, referee computes a matching M based only on the content of the blackboard (and some random bits if π is randomized). Referee may output illegal pairs, i.e., pairs that are not edges in G.

Let $M_{\pi}(G)$ be the output of protocol π on graph G. Then the size of the computed matching is $|M_{\pi}(G) \cap E(G)|$.

D(Approximate Matchings): We say that a protocol π computes an α -approximate matching for $G \ (\alpha \geq 1)$ if $|M_{\pi}(G) \cap E(G)| \geq \frac{1}{\alpha} \cdot |M(G)|$ where M(G) is a maximum matching in G.

Similarly, when the input graph G is distributed according to some distribution μ , we say that the *approximation ratio* of π is α if

$$\mathop{\mathbb{E}}_{G \sim \mu}[|M_{\pi}(G) \cap E(G)|] \geq \frac{1}{\alpha} \cdot \mathop{\mathbb{E}}_{G \sim \mu}[|M(G)|].$$

Parameters: r = # of round, and $\ell = \#$ of bits in a message (by a players in one round).

Result

T: For every $r \ge 1$, there exist a distribution μ_r such that the approximation ratio of any (deterministic or randomized) protocol is $\Omega(n^{1/5^{r+1}})$ if $\ell \le n^{1/5^{r+1}}$.

By averaging (Yao's) principle, we may consider deterministic protocols only.

Hard distribution μ_r

D(Recursive definition of μ_r): Fix some ℓ . For r = 0, G^0 consists of a set of n_0 players $U^0 = \{b_1, \ldots, b_{n_0}\}$ and a set of m_0 items $V^0 = \{j_1, \ldots, j_{m_0}\}$, such that $n_0 = m_0 = \ell^5$. E^0 is then obtained by selecting a random permutation $\sigma \in_R S_{\ell^5}$ and connecting $(b_i, j_{\sigma(i)})$ by an edge.

For any $r\geq 0,$ the distribution μ_{r+1} over $G^{r+1}=(U^{r+1},V^{r+1},E^{r+1})$ is defined as follows:

Vertices:

- The set of players is $U^{r+1}:=\bigcup_{i=1}^{n_r^4}B_i$ where $|B_i|=n_r.$ Thus, $n_{r+1}=n_r^5$.
- The set of items is $V^{r+1} := \bigcup_{j=1}^{n_r^4 + \ell \cdot n_r^2} T_j$ where $|T_j| = m_r$. Thus, $m_{r+1} = (n_r^4 + \ell \cdot n_r^2) \cdot m_r$.

Edges:

- Let d_r be the degree of each player in the graph G^r (it is the same for all).
- First choose $\ell \cdot n_r^2$ random indices $\{a_1, a_2, \dots a_{\ell \cdot n_r^2}\}$ from $[n_r^4 + \ell \cdot n_r^2]$, and a random permutation $\sigma : [n_r^4] \longrightarrow [n_r^4 + \ell \cdot n_r^2] \setminus \{a_1, a_2, \dots a_{\ell \cdot n_r^2}\}$.
- Each player $u \in B_i$ is connected to d_r random items in each one of the blocks $T_{a_1}, T_{a_2}, \ldots, T_{a_{\ell,n_r}^2}$, using independent randomness for each of the blocks and for each player.
- The entire block B_i is further connected to the entire block $T_{\sigma(i)}$ using an independent copy of the distribution μ_r .

Main theorem

Since a graph generated by μ_r has a perfect matching, it suffices to prove the following:

T(Main): For every $r \ge 0$ expected size of matching produced by an r-round protocol π under distribution μ_r is at most $5n_r^{1-1/5^{r+1}}$.

D: The ℓ_1 (statistical) distance between two distributions in the same probability space is denoted $|\mu - \nu| := \frac{1}{2} \cdot \sum_a |\mu(a) - \nu(a)|$

Fact: Let μ and ν be two probability distributions over a nonnegative random variable X, whose value is bounded by X_{max} . Then $\mathbb{E}_{\nu}[X] \leq \mathbb{E}_{\mu}[X] + |\mu - \nu| \cdot X_{max}.$

Notation

- For a vector random variable $X = X_1 X_2 \dots X_s$, we use the shorthands $X_{\leq i}$ and X_{-i} to denote $X_1 X_2 \dots X_i$ and $X_1 X_2 \dots X_{i-1}, X_{i+1}, \dots, X_s$ respectively
- Each block B_i of players is connected to exactly $\ell \cdot n_r^2 + 1$ blocks of items whose indices we denote by

$$\mathcal{I}_i := \{ \sigma(i), a_1, a_2, \dots a_{\ell \cdot n_n^2} \}.$$

- For each B_i, let τ_i : I_i → [ℓ · n_r² + 1] be the bijection that maps any index in I_i to its location in the sorted list of I_i (i.e., τ_i⁻¹(1) is the smallest index in I_i, τ_i⁻¹(2) is the second smallest index in I_i, and so forth).
- G_j^i is the (induced) subgraph of $G = G^{r+1}$ on the sets $(B_i, T_{\tau^{-1}(j)})$, for each $j \in [\ell \cdot n_r^2 + 1]$.

- For a player $u \in B_i$, let $G_j^u = (u, T_{\tau_i^{-1}(j)})$ denote the (induced) subgraph of G on the sets $(u, T_{\tau_i^{-1}(j)})$.
- Let $J_i := \tau_i(\sigma(i))$ denote the index (in \mathcal{I}_i) of the "hidden graph" $G_{J_i}^i = (B_i, T_{\sigma(i)})$. For brevity we write $G(J_i) := G_{J_i}^i$.
- We use the shorthands $\mathbf{J} := J_1, \dots, J_{n_r^4}$ and $\mathcal{I} := \mathcal{I}_1, \mathcal{I}_2, \dots, \mathcal{I}_{n_r^4}$.
- Let $M_{B_i} = M_{B_i}^1 M_{B_i}^2, \ldots, M_{B_i}^{n_r}$ denote the (concatenated) messages sent by all of the players in a block B_i in the first round of π
- Let $\psi_r^i := (G(J_i) \mid M_{B_i} = m_{B_i}, J_i = j_i, \mathcal{I}_i)$ denote the distribution of the "hidden graph" $G(J_i)$ conditioned on M_{B_i}, \mathcal{I}_i and J_i .
- For every block B_i and every player $u \in B_i$, let

$$G(T_i) := \begin{pmatrix} \ell \cdot n_r^2 \\ B_i, \bigcup_{j=1}^{\ell \cdot n_r^2} T_{a_j} \end{pmatrix} \quad , \quad G_T^u := \begin{pmatrix} \ell \cdot n_r^2 \\ u, \bigcup_{j=1}^{\ell \cdot n_r^2} T_{a_j} \end{pmatrix}$$

denote the induced subgraph on the block B_i (on the player $u\in B_i)$ and all "fooling blocks" respectively.

- For any subset $S \subseteq [n_r^4]$, we write $G(T_S) := \left(\bigcup_{i \in S} B_i, \bigcup_{j=1}^{\ell \cdot n_r^2} T_{a_j}\right)$ and use the convention $\mathbf{T} := T_{[n_r^4]}$.
- In what follows, $G(\mathbf{J}) := G(J_1)G(J_2)\ldots G(J_{n_r^4})$ denotes the (concatenation of the) "hidden" graphs.

Three key lemmas

 \mathbf{L} (Conditional subgraph decomposition):

1.
$$((G_T^1, G_T^2, \dots, G_T^{n_T}) \mid M_1, G(J_1), \mathbf{J}, \mathcal{I}) \sim \underset{u \in B_1}{\times} (G_T^u \mid M_1, G_{J_1}^u, \mathbf{J}, \mathcal{I}).$$

2.
$$(G(\mathbf{J}), G(\mathbf{T}) \mid M_1, \mathbf{J}, \mathcal{I}) \sim \underset{i \in [n_t^4]}{\times} (G(J_i)G(T_i) \mid M_{B_i}, \mathbf{J}, \mathcal{I}).$$

 $\mathbf{L}(\psi_r^i \text{ and } \mu_r \text{ are close})$: For every $i \in [n_r^4]$,

$$\mathbb{E}_{n_{B_i},\mathcal{I}_i,j_i}\left[|\psi_r^i - \mu_r|\right] \le \sqrt{\frac{1}{n_r}}.$$

 $\mathbf{L}(r$ -round Embedding):

$$\mathbb{E}_{\substack{m_1\\\mathbf{J},\mathcal{I}_G|\ (G(J_1),m_1,\mathbf{J},\mathcal{I})}} \mathbb{E}_{\left[N_{\pi\mid m_1}(G,G(J_1))\right] \le 5n_r \cdot \left(\sum_{k=0}^{r-1} \Delta_k^{1/2}\right) + 1.$$

A bit of information theory

D(Relative entropy): For two distributions μ and ν in the same probability space, the Kullback-Leiber divergence (or relative entropy) between μ and ν is defined as

$$\mathbb{D}\left(\mu(a)\|\nu(a)\right) := \mathop{\mathbb{E}}_{a \sim \mu}\left[\log\frac{\mu(a)}{\nu(a)}\right].$$
(1)

L(Pinsker's inequality): For any two distributions μ and ν ,

$$|\mu(a) - \nu(a)|^2 \le \frac{1}{2} \cdot \mathbb{D}(\mu(a) || \nu(a)).$$

B conditioned on C is

$$I(A; B|C) := \mathop{\mathbb{E}}_{\mu(ca)} \mathop{\mathbb{D}} \left(\mu(b|ac) \| \mu(b|c) \right) = \sum_{a,b,c} \mu(abc) \log \frac{\mu(a|bc)}{\mu(a|c)}$$

Fact: $I(A; C|D) \le H(A|D) \le H(A) \le \log |\operatorname{supp}(A)|,$

Fact(Chain rule for mutual information): Let A, B, C, D be jointly distributed random variables. Then I(AB; C|D) = I(A; C|D) +I(B; C|AD).

D(Conditional Mutual Information): Let A, B, C be jointly dis-**Fact**(Conditioning on independent variables increases information) tributed random variables. The Mutual Information between A and Let A, B, C, D be jointly distributed random variables. If I(A; D|C) =0, then it holds that I(A; B|C) < I(A; B|CD).

> **Fact:** Let A, B, C, D be jointly distributed random variables such that I(B; D|AC) = 0. Then it holds that $I(A; B|C) \ge I(A; B|CD)$.

> **Fact**(Data processing inequality): Let $X \to Y \to Z$ be a Markov chain (I(X; Z|Y) = 0). Then $I(X; Z) \leq I(X; Y)$.

> An important special case is when Z is a deterministic function of Y.