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What is welfare? A large bipartite matching between players (bidders)
and items (goods)!

Communication model
There is an bipartite graph G between a set of n players and a set
of m items. Each player knows only a subset of items adjacent to
him. There is a referee (central planner) that is supposed to compute
a matching as large as possible, but cannot see G at all. The players
communicate among each other using the following model.

D(Multiparty communication model with a shared blackboard): Play-
ers communicate in a fixed number of rounds r using a protocol π. In
each round each player writes at most ` bits on the blackboard and
they do it simultaneously.

If π is deterministic, then each message of a player depends only on
the private input of the player and the content of the blackboard from
previous rounds. In a randomized π the message may further depend
on some random bits (private or public).

After the end of the r-th round, referee computes a matching M based
only on the content of the blackboard (and some random bits if π is
randomized). Referee may output illegal pairs, i.e., pairs that are not
edges in G.

Let Mπ(G) be the output of protocol π on graph G. Then the size of
the computed matching is |Mπ(G) ∩ E(G)|.

D(Approximate Matchings): We say that a protocol π computes an
α-approximate matching for G (α ≥ 1) if |Mπ(G)∩E(G)| ≥ 1

α
·|M(G)|

where M(G) is a maximum matching in G.

Similarly, when the input graph G is distributed according to some
distribution µ, we say that the approximation ratio of π is α if

E
G∼µ

[|Mπ(G) ∩ E(G)|] ≥
1

α
· E
G∼µ

[|M(G)|].

Parameters: r = # of round, and ` = # of bits in a message (by a
players in one round).

Result
T: For every r ≥ 1, there exist a distribution µr such that the ap-
proximation ratio of any (deterministic or randomized) protocol is

Ω(n1/5r+1
) if ` ≤ n1/5r+1

.

By averaging (Yao’s) principle, we may consider deterministic proto-
cols only.

Hard distribution µr

D(Recursive definition of µr): Fix some `. For r = 0, G0 consists
of a set of n0 players U0 = {b1, . . . , bn0} and a set of m0 items
V 0 = {j1 . . . , jm0}, such that n0 = m0 = `5. E0 is then obtained by
selecting a random permutation σ ∈R S`5 and connecting (bi, jσ(i))
by an edge.

For any r ≥ 0, the distribution µr+1 over Gr+1 =
(Ur+1, V r+1, Er+1) is defined as follows:
Vertices:

• The set of players is Ur+1 :=
⋃n4

r
i=1Bi where |Bi| = nr. Thus,

nr+1 = n5
r .

• The set of items is V r+1 :=
⋃n4

r+`·n
2
r

j=1 Tj where |Tj | = mr.

Thus, mr+1 = (n4
r + ` · n2

r) ·mr.
Edges:

• Let dr be the degree of each player in the graph Gr (it is the
same for all).

• First choose ` · n2
r random indices {a1, a2, . . . a`·n2

r
} from [n4

r +

` · n2
r], and a random permutation σ : [n4

r] −→ [n4
r + ` · n2

r] \
{a1, a2, . . . a`·n2

r
}.

• Each player u ∈ Bi is connected to dr random items in each
one of the blocks Ta1 , Ta2 , . . . , Ta`·n2

r
, using independent ran-

domness for each of the blocks and for each player.
• The entire block Bi is further connected to the entire block Tσ(i)

using an independent copy of the distribution µr.

Main theorem
Since a graph generated by µr has a perfect matching, it suffices to
prove the following:

T(Main): For every r ≥ 0 expected size of matching produced by an

r-round protocol π under distribution µr is at most 5n
1−1/5r+1

r .

D: The `1 (statistical) distance between two distributions in the same
probability space is denoted |µ− ν| := 1

2
·
∑
a |µ(a)− ν(a)|

Fact: Let µ and ν be two probability distributions over a non-
negative random variable X, whose value is bounded by Xmax. Then

Eν [X] ≤ Eµ[X] + |µ− ν| ·Xmax.

Notation
• For a vector random variable X = X1X2 . . . Xs, we use

the shorthands X≤i and X−i to denote X1X2 . . . Xi and
X1X2 . . . Xi−1, Xi+1, . . . . . . Xs respectively

• Each block Bi of players is connected to exactly ` ·n2
r +1 blocks

of items whose indices we denote by

Ii := {σ(i), a1, a2, . . . a`·n2
r
}.

• For each Bi, let τi : Ii −→ [` · n2
r + 1] be the bijection that

maps any index in Ii to its location in the sorted list of Ii (i.e.,
τ−1
i (1) is the smallest index in Ii, τ−1

i (2) is the second smallest
index in Ii and so forth).

• Gij is the (induced) subgraph of G = Gr+1 on the sets

(Bi, Tτ−1
i (j)

), for each j ∈ [` · n2
r + 1].

• For a player u ∈ Bi, let Guj = (u, T
τ−1
i (j)

) denote the (induced)

subgraph of G on the sets (u, T
τ−1
i (j)

).

• Let Ji := τi(σ(i)) denote the index (in Ii) of the “hidden graph”
GiJi = (Bi, Tσ(i)). For brevity we write G(Ji) := GiJi .

• We use the shorthands J := J1, . . . , Jn4
r

and I :=

I1, I2, . . . , In4
r
.

• Let MBi
= M1

Bi
M2
Bi
, . . . ,Mnr

Bi
denote the (concatenated) mes-

sages sent by all of the players in a block Bi in the first round
of π
• Let ψir := (G(Ji) | MBi

= mBi
, Ji = ji, Ii) denote the distri-

bution of the “hidden graph” G(Ji) conditioned on MBi
, Ii and

Ji.
• For every block Bi and every player u ∈ Bi, let

G(Ti) :=

Bi, `·n
2
r⋃

j=1

Taj

 , GuT :=

u, `·n2
r⋃

j=1

Taj


denote the induced subgraph on the block Bi (on the player
u ∈ Bi) and all “fooling blocks” respectively.

• For any subset S ⊆ [n4
r], we write G(TS) :=(⋃

i∈S Bi,
⋃`·n2

r
j=1 Taj

)
and use the convention T := T[n4

r ]
.

• In what follows, G(J) := G(J1)G(J2) . . . G(Jn4
r
) denotes the

(concatenation of the) “hidden” graphs.

Three key lemmas
L(Conditional subgraph decomposition):

1. ((G1
T , G

2
T , . . . , G

nr
T ) |M1, G(J1),J, I) ∼ ×

u∈B1

(GuT |M1, G
u
J1
,J, I).

2. (G(J), G(T) |M1,J, I) ∼ ×
i∈[n4

r ]

(G(Ji)G(Ti) |MBi
,J, I).

L(ψir and µr are close): For every i ∈ [n4
r],

E
mBi

,Ii,ji

[
|ψir − µr|

]
≤

√
1

nr
.

L(r-round Embedding):

E
m1
J,I

E
G(J1)∼µr

G| (G(J1),m1,J,I)

[
Nπ|m1

(G,G(J1))
]
≤ 5nr ·

(
r−1∑
k=0

∆
1/2
k

)
+ 1.



A bit of information theory
D(Relative entropy): For two distributions µ and ν in the same prob-
ability space, the Kullback-Leiber divergence (or relative entropy) be-
tween µ and ν is defined as

D (µ(a)‖ν(a)) := E
a∼µ

[
log

µ(a)

ν(a)

]
. (1)

L(Pinsker’s inequality): For any two distributions µ and ν,

|µ(a)− ν(a)|2 ≤
1

2
· D (µ(a)‖ν(a)) .

D(Conditional Mutual Information): Let A,B,C be jointly dis-
tributed random variables. The Mutual Information between A and
B conditioned on C is

I(A;B|C) := E
µ(ca)

D (µ(b|ac)‖µ(b|c)) =
∑
a,b,c

µ(abc) log
µ(a|bc)
µ(a|c)

.

Fact: I(A;C|D) ≤ H(A|D) ≤ H(A) ≤ log |supp(A)|,
Fact(Chain rule for mutual information): Let A,B,C,D be jointly
distributed random variables. Then I(AB;C|D) = I(A;C|D) +
I(B;C|AD).

Fact(Conditioning on independent variables increases information):
Let A,B,C,D be jointly distributed random variables. If I(A;D|C) =
0, then it holds that I(A;B|C) ≤ I(A;B|CD).

Fact: Let A,B,C,D be jointly distributed random variables such
that I(B;D|AC) = 0. Then it holds that I(A;B|C) ≥ I(A;B|CD).

Fact(Data processing inequality): Let X → Y → Z be a Markov
chain (I(X;Z|Y ) = 0). Then I(X;Z) ≤ I(X;Y ).

An important special case is when Z is a deterministic function of Y .


