Variations on the sum-product problem

Brendan Murphy, Oliver Roche-Newton, Ilya Shkredov

Introduction, main results

Let $A, B, C \subset \mathbb{R}$. We define the sum set $A+B=\{a+b: a \in A, b \in B\}$ and the product set $A B=\{a b: a \in A, b \in B\}$. We focus our study on the set $A(B+C)=\{a(b+c): a \in$ $A, b \in B, c \in C\}$, particularly we are interested in the set $A(A+A)$, where both additive and multiplicative structure is present. While the best lower bound $\max \{|A A|,|A+A|\} \gg \frac{|A|^{4 / 3}}{(\log |A|)^{1 / 3}}$ implies

$$
|A(A+A)| \gg \frac{|A|^{4 / 3}}{(\log |A|)^{1 / 3}},
$$

Balog conjectures that $|A(A+A)| \gg|A|^{2-\varepsilon}$ for any $\varepsilon>0$. We prove

Theorem 1

$$
|A(A+A)| \gtrsim|A|^{\frac{3}{2}+\frac{1}{178}} .
$$

The notation \gtrsim is used to supress both constant and logarithmic factors. Our method can be addapted for the bounds where more variables are involved. We obtain two results:
Theorem 2

$$
|A(A+A+A)| \gtrsim|A|^{\frac{7}{4}+\frac{1}{284}}
$$

Theorem 3

$$
|A(A+A+A+A)| \gg \frac{|A|^{2}}{\log |A|}
$$

Especially the last bound is important since it verifies extended version of Balog's conjecture. Moreover, this bound is tight in the case when A is an arithmetic progression.

Notation and auxiliary lemma

Given $x \in \mathbb{R}$, we use the notation $r_{A+B}(x)$ to denote the number of representations of x as an element of $A+B$, more precisely

$$
r_{A+B}(x)=|\{(a, b) \in A \times B: a+b=x\}| .
$$

In a similar way we define the number of representations of x as an element of a given set in the subscript, for example $r_{A(B+C)}(x)$.

We denote the multiplicative energy $E^{*}(A)$ of A as the number of solutions to the equation $a_{1} a_{2}=a_{3} a_{4}$, such that $a_{1}, a_{2}, a_{3}, a_{4} \in A$. Similarly, the multiplicative energy $E^{*}(A, B)$ of A and B is the number of solutions to the equation $a_{1} b_{1}=a_{2} b_{2}$, such that $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$.

There is a connection between multiplicative energy and multiplicative representation function since

$$
E^{*}(A, B)=\sum_{x} r_{A B}^{2}(x)=\sum_{x} r_{A: A}(x) r_{B: B}(x)=\sum_{x} r_{A: B}^{2}(x) .
$$

Lemma 1 If $|X| \leq|A||B|$ then

$$
\sum_{x \in X} E^{+}(A, x B) \ll|A|^{3 / 2}|B|^{3 / 2}|X|^{1 / 2}
$$

Lemma 2 If $|A|,|B| \geq 4$ then

$$
E_{2}^{*}(A)|A(B+C)|^{2} \gg \frac{|A|^{4}|B||C|}{\log |A|}
$$

Prerequisites

Proposition 1 (Szemerédi-Trotter)

$$
I(P, L) \ll|P|^{2 / 3}|L|^{2 / 3}+|L|+|P|
$$

Any point of P incident to at least t lines we call t-rich point. Let P_{t} denote the set of all t-rich points.
Corollary 1 We have

$$
\left|P_{t}\right| \ll \frac{|L|^{2}}{t^{3}}+\frac{|L|}{t} .
$$

Moreover, if no point of P_{t} is incident to more than $|L|^{1 / 2}$ lines, then

$$
\left|P_{t}\right| \ll \frac{|L|^{2}}{t^{3}}
$$

Proposition 2

$$
|A: A|^{10}|A+A|^{9} \gtrsim|A|^{24} \quad \text { and } \quad|A: A|^{6}|A-A|^{5} \gtrsim|A|^{14}
$$

Proposition 3 If $E^{*}(A) \geq|A|^{3} / K$ then there is $A^{\prime} \subset A$ such that $\left|A^{\prime}\right| \gtrsim|A| / 2$ and

$$
\left|A^{\prime}: A^{\prime}\right| \lesssim K^{4} \frac{\left|A^{\prime}\right|^{3}}{|A|^{2}} .
$$

Proposition 4

$$
E^{*}(A) \ll|A+A|^{2} \log |A| .
$$

