Tomáš Masařík

masarik@kam.mff.cuni.cz

Presented paper by Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin

Tight Bounds for Subgraph Isomorphism and Graph Homomorphism

(http://arxiv.org/abs/1507.03738)

Known useful results

Exponential Time Hypothesis There is a positive real s such that 3-SAT with n variables and m clauses cannot be solved in time $2^{sn}(n+m)^{O(1)}$.

Definition [Graph homomorphism]

Let G be an n vertex graph and H be an h(n) vertex graph.

Then vertex mapping is graph homomorphism $G \hookrightarrow H$ iff every edge of G is mapped to an edge in G.

Lemma [ETH for 3-COLORING (Lokhstanov et al. 2013)] Unless ETH fails, there exist a constant q > 0 such that there is no algorithm solving 3-COLORING on a graph with n vertices of maximum degree four in time $O(2^{qn})$.

Lemma [lemma 5 (Fomin et al. 2015)] There is a polynomial-time algorithm that from an instance (G, H) of LIST GRAPH HOMOMORPHISM construct an instance (G', H') of GRAPH HOMOMORPHISM such that $|V(G')| \leq |V(G)| + 25|V(H)|^2$ and $|V(H')| \leq 25|V(H)|^2$.

New results

Theorem [Tightness of graph homomorphism] Let G be an n vertex graph and H be an h(n) vertex graph.

Unless ETH fails, for any constant $D \ge 1$ there exists a constant c(D) > 0 such that for any function h satisfying $3 \le h(n) \le n^D$ there is no $O(h^{cn})$ -time algorithm deciding $G \hookrightarrow H$.