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A bit of proof complexity: Resolution

Resolution refutation of a propositional formula φ in CNF is a sequence of clauses which
are either clauses of φ or clauses derived by the resolution rule from previous clauses: From
clauses A ∨ x and B ∨ ¬x infer the clause A ∨B.

There is a resolution refutation of φ iff φ is unsatisfiable.

Definition. L(φ) = length (number of clauses) of a shortest resolution refutation of φ.
(L(φ) =∞ for a satisfiable φ.)

c-Ramsey graphs

Definition. For a constant c > 0, an n-vertex graph is c-Ramsey if it does not contain a
clique or an independent set of size c · log n.

We define a formula ΨG expressing a property that G is not c-Ramsey and show the
following:

Theorem 1. For every graph G it holds that L(ΨG) ≥ nΩ(logn).

W.l.o.g., there are n = 2k vertices in G.

From L(φ) to a game

Definition. The width a clause is the number of literals in it and the width of φ is the
maximum width of its clause. Similarly, the width of resolution refutation Π is the maximum
width of a clause in Π.

We define W (φ) to be the minimum width of a refutation of φ.

We use the following theorem by Ben-Sasson and Wigderson:

Theorem 2. For every CNF formula φ with m variables and width w:

L(φ) ≥ 2Ω((W (φ)−w)2/m) .

The lower bound on W (φ) follows from analysis of a game between Prover and Adversary:
• Prover claims that φ is unsatisfiable,
• Adversary claims to know a satisfying assignment.
• Prover asks Adversary for values of variables, but has a limited memory.
• Prover wins if the partial assignment in his memory falsifies a clause of φ.
• Adversary wins if it has a strategy to play forever.

Lemma 3. Given an unsatisfiable φ, Prover needs only W (φ) + 1 memory locations to win
the game against any Adversary.

1



We thus show a winning strategy for Adversary if Prover has small memory.

Definition. A pattern is a partial assignment to k variables. Formally, it is a string p =
p1 . . . pk ∈ {∗, 0, 1}k. We say that p is consistent with binary string v (a vertex) if for all
i ∈ [k] either pi = vi or pi = ∗. The size |p| of p is the number of bits set to 0 or 1. The
empty pattern is a string of k stars.

Lower bounds for random graphs

Theorem 4. If G ∼ G(n, 1
2) is a random graph, then with high probability L(ΨG) = nΩ(logn).

We use the following property P of random graphs: For any U ⊆ V (G) with |U | ≤ 1
3k and

for any pattern p with |p| ≤ 1
3k, p is consistent with at least one vertex in N(U) =

⋂
v∈U N(v).

Lemma 5. For G ∼ G(n, 1
2) the property P holds with high probability.

Lemma 6. For any G with property P , there is an Adversary strategy which wins against
any Prover who uses at most 1

9k
2 memory locations.

Lower bounds for c-Ramsey graphs

Definition. Given sets A,B ⊆ V (G) we define their mutual density by

d(A,B) =
|E(A,B)|
|A| · |B|

where E(A,B) is the set of edges with one endpoint in A and the other in B.

We use the following property of c-Ramsey graphs due to Prömel and Rödl:

Lemma 7. There exists constants β > 0, δ > 0 such that if G is a c-Ramsey graph, then
there is a set S ⊆ V (G) with |S| ≥ n3/4 such that for all A,B ⊆ S, if |A|, |B| ≥ |S|1−β then
δ ≤ d(A,B).

We derive the following property which we use instead of P :

Corollary 8. Let X,Y1, Y2, . . . , Yr ⊆ S be such that |X| ≥ rm1−β and |Y1|, . . . , |Yr| ≥ m1−β.
Then there exist v ∈ X such that d(v, Yi) ≥ δ for each i = 1, . . . , r.

Lemma 9. There is a constant ε > 0, independent of n and G, such that there exists a
strategy for the Adversary in the game which wins against any Prover who is limited to ε2k2

memory locations.
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