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A bit of proof complexity: Resolution

Resolution refutation of a propositional formula ¢ in CNF is a sequence of clauses which
are either clauses of ¢ or clauses derived by the resolution rule from previous clauses: From
clauses A V x and B V -z infer the clause AV B.

There is a resolution refutation of ¢ iff ¢ is unsatisfiable.

Definition. L(¢) = length (number of clauses) of a shortest resolution refutation of ¢.
(L(¢) = oo for a satisfiable ¢.)

c-Ramsey graphs

Definition. For a constant ¢ > 0, an n-vertex graph is c-Ramsey if it does not contain a
clique or an independent set of size ¢ - logn.

We define a formula Vg expressing a property that G is mot c-Ramsey and show the
following:

Theorem 1. For every graph G it holds that L(¥g) > n(logn),

W.lLo.g., there are n = 2* vertices in G.

From L(¢) to a game

Definition. The width a clause is the number of literals in it and the width of ¢ is the
maximum width of its clause. Similarly, the width of resolution refutation II is the maximum

width of a clause in II.
We define W(¢) to be the minimum width of a refutation of ¢.

We use the following theorem by Ben-Sasson and Wigderson:
Theorem 2. For every CNF formula ¢ with m variables and width w:

L(¢) > 2UW(@)-w)?/m)

The lower bound on W (¢) follows from analysis of a game between Prover and Adversary:
Prover claims that ¢ is unsatisfiable,

Adversary claims to know a satisfying assignment.

Prover asks Adversary for values of variables, but has a limited memory.

Prover wins if the partial assignment in his memory falsifies a clause of ¢.
Adversary wins if it has a strategy to play forever.

Lemma 3. Given an unsatisfiable ¢, Prover needs only W (¢) + 1 memory locations to win
the game against any Adversary.



We thus show a winning strategy for Adversary if Prover has small memory.

Definition. A pattern is a partial assignment to k variables. Formally, it is a string p =
p1...pr € {*,0,1}*. We say that p is consistent with binary string v (a vertex) if for all
i € [k] either p; = v; or p; = *. The size |p| of p is the number of bits set to 0 or 1. The
empty pattern is a string of k stars.

Lower bounds for random graphs
Theorem 4. If G ~ G(n, %) is a random graph, then with high probability L(Vg) = n®(ogn),

We use the following property P of random graphs: For any U C V(G) with |U| < %kz and
for any pattern p with |p| < £k, p is consistent with at least one vertex in N(U) = ,c N (v).

Lemma 5. For G ~ G(n, %) the property P holds with high probability.

Lemma 6. For any G with property P, there is an Adversary strateqy which wins against
any Prover who uses at most %kz memory locations.

Lower bounds for c-Ramsey graphs
Definition. Given sets A, B C V(G) we define their mutual density by

_ |E(A, B)|
WA B) = A B

where E(A, B) is the set of edges with one endpoint in A and the other in B.
We use the following property of c-Ramsey graphs due to Promel and Rodl:

Lemma 7. There exists constants § > 0,6 > 0 such that if G is a c-Ramsey graph, then
there is a set S C V(G) with |S| > n3/* such that for all A,B C S, if |A|,|B| > |S|*=# then
0 <d(A,B).

We derive the following property which we use instead of P:

Corollary 8. Let X,Y1,Ys,...,Y, C S be such that | X| > rm'=" and |Y1],...,|Y;| > m!~P.
Then there exist v € X such that d(v,Y;) > 6 for eachi=1,...,r.

Lemma 9. There is a constant € > 0, independent of n and G, such that there ezists a
strategy for the Adversary in the game which wins against any Prover who is limited to £2k?
memory locations.



