The complexity of proving that a graph is Ramsey

Massimo Lauria, Pavel Pudlák, Vojtěch Rödl, and Neil Thapen
Presented by Pavel Veselý

A bit of proof complexity: Resolution

Resolution refutation of a propositional formula ϕ in CNF is a sequence of clauses which are either clauses of ϕ or clauses derived by the resolution rule from previous clauses: From clauses $A \vee x$ and $B \vee \neg x$ infer the clause $A \vee B$.

There is a resolution refutation of ϕ iff ϕ is unsatisfiable.
Definition. $L(\phi)=$ length (number of clauses) of a shortest resolution refutation of ϕ. ($L(\phi)=\infty$ for a satisfiable ϕ.)

c-Ramsey graphs

Definition. For a constant $c>0$, an n-vertex graph is c-Ramsey if it does not contain a clique or an independent set of size $c \cdot \log n$.

We define a formula Ψ_{G} expressing a property that G is not c-Ramsey and show the following:

Theorem 1. For every graph G it holds that $L\left(\Psi_{G}\right) \geq n^{\Omega(\log n)}$.
W.l.o.g., there are $n=2^{k}$ vertices in G.

From $L(\phi)$ to a game

Definition. The width a clause is the number of literals in it and the width of ϕ is the maximum width of its clause. Similarly, the width of resolution refutation Π is the maximum width of a clause in Π.

We define $W(\phi)$ to be the minimum width of a refutation of ϕ.
We use the following theorem by Ben-Sasson and Wigderson:
Theorem 2. For every CNF formula ϕ with m variables and width w :

$$
L(\phi) \geq 2^{\Omega\left((W(\phi)-w)^{2} / m\right)} .
$$

The lower bound on $W(\phi)$ follows from analysis of a game between Prover and Adversary:

- Prover claims that ϕ is unsatisfiable,
- Adversary claims to know a satisfying assignment.
- Prover asks Adversary for values of variables, but has a limited memory.
- Prover wins if the partial assignment in his memory falsifies a clause of ϕ.
- Adversary wins if it has a strategy to play forever.

Lemma 3. Given an unsatisfiable ϕ, Prover needs only $W(\phi)+1$ memory locations to win the game against any Adversary.

We thus show a winning strategy for Adversary if Prover has small memory.
Definition. A pattern is a partial assignment to k variables. Formally, it is a string $p=$ $p_{1} \ldots p_{k} \in\{*, 0,1\}^{k}$. We say that p is consistent with binary string v (a vertex) if for all $i \in[k]$ either $p_{i}=v_{i}$ or $p_{i}=*$. The size $|p|$ of p is the number of bits set to 0 or 1 . The empty pattern is a string of k stars.

Lower bounds for random graphs

Theorem 4. If $G \sim \mathcal{G}\left(n, \frac{1}{2}\right)$ is a random graph, then with high probability $L\left(\Psi_{G}\right)=n^{\Omega(\log n)}$.
We use the following property P of random graphs: For any $U \subseteq V(G)$ with $|U| \leq \frac{1}{3} k$ and for any pattern p with $|p| \leq \frac{1}{3} k, p$ is consistent with at least one vertex in $N(U)=\bigcap_{v \in U} N(v)$.

Lemma 5. For $G \sim \mathcal{G}\left(n, \frac{1}{2}\right)$ the property P holds with high probability.
Lemma 6. For any G with property P, there is an Adversary strategy which wins against any Prover who uses at most $\frac{1}{9} k^{2}$ memory locations.

Lower bounds for c-Ramsey graphs

Definition. Given sets $A, B \subseteq V(G)$ we define their mutual density by

$$
d(A, B)=\frac{|E(A, B)|}{|A| \cdot|B|}
$$

where $E(A, B)$ is the set of edges with one endpoint in A and the other in B.
We use the following property of c-Ramsey graphs due to Prömel and Rödl:
Lemma 7. There exists constants $\beta>0, \delta>0$ such that if G is a c-Ramsey graph, then there is a set $S \subseteq V(G)$ with $|S| \geq n^{3 / 4}$ such that for all $A, B \subseteq S$, if $|A|,|B| \geq|S|^{1-\beta}$ then $\delta \leq d(A, B)$.

We derive the following property which we use instead of P :
Corollary 8. Let $X, Y_{1}, Y_{2}, \ldots, Y_{r} \subseteq S$ be such that $|X| \geq r m^{1-\beta}$ and $\left|Y_{1}\right|, \ldots,\left|Y_{r}\right| \geq m^{1-\beta}$. Then there exist $v \in X$ such that $d\left(v, Y_{i}\right) \geq \delta$ for each $i=1, \ldots, r$.

Lemma 9. There is a constant $\varepsilon>0$, independent of n and G, such that there exists a strategy for the Adversary in the game which wins against any Prover who is limited to $\varepsilon^{2} k^{2}$ memory locations.

