Random Permutations using Switching Networks

by Artur Czumaj Presented by Jan Musílek

Definitions

A switching network \mathfrak{N} of depth \mathfrak{d} is a layered network with $\mathfrak{d} + 1$ layers, each layer having *n* nodes. The nodes between consecutive layers are connected by disjoint *switches*.

A switch between two input nodes at layer l and two output nodes at layer l + 1 takes the two inputs and either transposes them (if the switch is active) or leaves them unchanged (if the switch is inactive).

A matching of $\{1, \ldots, n\}$ is a set of pairs $\{i, j\} \subseteq \{1, \ldots, n\}$ with $i \neq j$ such that no element from $\{1, \ldots, n\}$ appears in more than one pair. A **perfect matching** of $\{1, \ldots, n\}$ is a matching of $\{1, \ldots, n\}$ of size exactly $\frac{n}{2}$.

Let $\mathfrak{M}^{\mathfrak{d}}$ be the set of all sequences $(M_0, \ldots, M_{\mathfrak{d}-1})$ such that each M_t is a perfect matching of $\{1, \ldots, n\}$. For a given $M^{\mathfrak{d}} = (M_0, \ldots, M_{\mathfrak{d}-1}) \in \mathfrak{M}^{\mathfrak{d}}$, we define a switching network \mathfrak{N} of depth \mathfrak{d} so that the switches between layers i and i+1 are determined by the pairs of matching M_i . Every layered network \mathfrak{N} corresponding to $M^{\mathfrak{d}}, M^{\mathfrak{d}} = (M_0, \ldots, M_{\mathfrak{d}-1}) \in \mathfrak{M}^{\mathfrak{d}}$ defines in a natural way a stochastic process (Markov chain) $(\mathcal{Q})_{t=0}^{\mathfrak{d}}$ on state space of all permutation of $\{1, \ldots, n\}$.

A k-partial n-permutation is any sequence $\langle x_0, \ldots, x_{n-1} \rangle$ consisting of k 0s and n-k distinct elements from $1, \ldots, n-k$. The set of all k-partial n-permutations is denoted by $\mathbb{S}_{n,k}$. Observe that $|\mathbb{S}_{n,k}| = \frac{n!}{k!}$.

Let \mathfrak{MC} be a discrete-time Markov chain with a finite state space Ω and a unique stationary distribution $\mu_{\mathfrak{MC}}$. For any random variable X, let $\mathcal{L}(X)$ denote the probability distribution of X, and let $\mathcal{L}(\mathcal{Q}_t | \mathcal{Q}_0 = \omega)$ denote the probability distribution of \mathcal{Q}_t given that $\mathcal{Q}_0 = \omega$. The **total variation distance** between two probability distributions \mathcal{X} and \mathcal{Y} over the same finite domain Ω is defined as:

$$d_{TV}(\mathcal{X}, \mathcal{Y}) = \max_{S \subseteq \Omega} |\mathbf{Pr}_{\mathcal{X}}[S] - \mathbf{Pr}_{\mathcal{Y}}[S]| = \frac{1}{2} \sum_{\omega \in \Omega} |\mathbf{Pr}_{\mathcal{X}}[\omega] - \mathbf{Pr}_{\mathcal{Y}}[\omega]|$$

We define the total variation distance after t steps of \mathfrak{MC} with respect to initial state $\omega \in \Omega$ as $\Delta_{\omega}^{\mathfrak{MC}}(t) = d_{TV}(\mathcal{L}(\mathcal{Q}_t | \mathcal{Q}_0 = \omega), \mu_{\mathfrak{MC}})$. Then, the standard measure of the convergence of a Markov chain \mathfrak{MC} to its stationary distribution $\mu_{\mathfrak{MC}}$ is the *mixing time*, denoted by $\tau_{\mathfrak{MC}}(\varepsilon)$, which is defined as $\tau_{\mathfrak{MC}}(\varepsilon) = \min\{T \in \mathbb{N} : \forall \omega \in \Omega \forall t \geq T \Delta_{\omega}^{\mathfrak{MC}}(t) \leq \varepsilon\}$.

A coupling for a Markov chain $\mathfrak{MC} = (\mathcal{Q}_t)_{t \in \mathbb{N}}$ on state space Ω is a stochastic process $(\mathcal{X}_t, \mathcal{Y}_t)_{t \in \mathbb{N}}$ on $\Omega \times \Omega$ such that each of $(\mathcal{X}_t)_{t \in \mathbb{N}}$, $(\mathcal{Y}_t)_{t \in \mathbb{N}}$ considered independently, is a faithful copy of \mathfrak{MC} .

Lemma 2.1 (Delayed Path Coupling Lemma): Let $\mathfrak{MC} = (\mathcal{X}_t)_{t \in \mathbb{N}}$ be a discrete-time Markov chain with a finite state space Ω . Let Γ be any subset of $\Omega \times \Omega$. Suppose that there is an integer D such that for every $(\mathcal{X}, \mathcal{Y}) \in \Omega \times \Omega$ there exists a sequence $\mathcal{X} = \Lambda_0, \Lambda_1, \ldots, \Lambda_r = \mathcal{Y}$, where $(\Lambda_i, \Lambda_{i+1}) \in \Gamma$ for $0 \leq i < r$, and $r \leq D$. If there exists a coupling $(\mathcal{X}_t, \mathcal{Y}_t)_{t \in \mathbb{N}}$ for \mathfrak{MC} such that for some $T \in \mathbb{N}$, for all $(\mathcal{X}, \mathcal{Y}) \in \Gamma$, it holds that $\Pr[\mathcal{X}_T \neq \mathcal{Y}_T | (\mathcal{X}_0, \mathcal{Y}_0) = (\mathcal{X}, \mathcal{Y})] \leq \frac{\varepsilon}{D}$, then

$$||\mathcal{L}(\mathcal{X}_T|\mathcal{X}_0 = \mathcal{X}) - \mathcal{L}(\mathcal{Y}_T|\mathcal{Y}_0 = \mathcal{Y})|| \le \varepsilon$$

for every $(\mathcal{X}, \mathcal{Y}) \in \Omega \times \Omega$. In particular, $\tau_{\mathfrak{MC}}(\varepsilon/2) \leq T$.

Random walks on expanders

Let us consider a switching network \mathfrak{N} of depth \mathfrak{d} that corresponds to $M^{\mathfrak{d}} = (M_0, \ldots, M_{\mathfrak{d}-1} \in \mathfrak{M}^{\mathfrak{d}})$. Define an $\langle l, r \rangle$ -truncate of \mathfrak{N} to be the multigraph G = (V, E) on vertex set $V = \{1, \ldots, n\}$ with the edge set E consisting of all pairs (i, j) for which there is a path from i to j in the netwok induced by $M_l, M_{l+1}, \ldots, M_{l+r-1}$; if there are s paths from i to j then we have s edges (i, j) in E. Notice that G is 2^r -regular and it has selfloops.

Lemma 2.2: For every $r \ge 4$, there is a constant a, 0 < a < 1, such that for almost every switching network \mathfrak{N} (all but at most a $\frac{1}{n^2}$ fraction), for every $0 \le l \le \mathfrak{d} - r$, the $\langle l, r \rangle$ -truncate G of \mathfrak{N} is an (1-a)-expander.

Let us call a switching network \mathfrak{N} to be \mathfrak{good} if there is a constant r and another positive constant a such that every $\langle i \cdot r, r \rangle$ -truncate is a (1-a)-expander, $0 \leq i < \mathfrak{d}/r$.

Proposition 2.3: Almost all (all but a $\frac{1}{n^2}$ fraction) switching networks of logarithmic depth are \mathfrak{good} .

Proposition 2.4: One can explicitly construct a \mathfrak{good} switching network \mathfrak{N} .

Lemma 3.1: There is a constant c such that if we run the random shuffling process for $c \log_2 n$ steps with all switches set at random then the probability that two fundamental trees will be build is at least $1 - n^{-3}$.

Lemma 3.2: Let us fix any two sets of ρ disjoint positions for the leaves of the fundamental trees. There is a constant c such that if we run the random shuffling process for $c \log_2 n$ steps with all switches set at random then the probability that there is a fundamental matching is at least $1 - n^{-3}$.

Main results

Theorem 3.4: Let $k = \Omega(n)$. Let \mathfrak{N} be a good switching network of depth \mathfrak{d} with $\mathfrak{d} \geq c \log n$, for a sufficiently large constant c. Then \mathfrak{N} generates random k-partial n-permutations almost uniformly. That is, for any positive constant c_1 , if $\pi \in \mathbb{S}_{n,k}$, is the permutation generated by switching network \mathfrak{N} on an arbitrary input from $\mathbb{S}_{n,k}$ and μ is the uniform distribution over $\mathbb{S}_{n,k}$, then $d_{TV}(\mathcal{L}(\pi),\mu) \leq \mathcal{O}(n^{-c_1})$.

Theorem 3.5: For any $\varepsilon > 0$, almost every (all but a $\mathcal{O}(n^{-2})$ fraction) switching network \mathfrak{N} of depth \mathfrak{d} $(\mathfrak{d} \ge c \log n)$ almost randomly permutes any set of $(1 - \varepsilon)n$ elements.

Theorem 3.6: For any $\varepsilon > 0$, there is an explicit switching network \mathfrak{N} of depth \mathfrak{d} ($\mathfrak{d} \ge c \log n$) that almost randomly permutes any set of $(1 - \varepsilon)n$ elements.

Theorem 3.8: Let c_2 be an arbitrary constant. There is an explicit switching network \mathfrak{N} of depth $\mathcal{O}(\log^2 n)$ and with $\mathcal{O}(n \log n)$ switches such that if $\pi \in \mathbb{S}_n$ denotes the permutation generated by \mathfrak{N} and μ is the uniform distribution over \mathbb{S}_n , then $d_{TV}(\mathcal{L}(\pi), \mu) \leq \mathcal{O}(n^{-c_2})$.