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Definitions

A switching network 91 of depth 0 is a layered network with d + 1 layers, each layer having n nodes.
The nodes between consecutive layers are connected by disjoint switches.

A switch between two input nodes at layer [ and two output nodes at layer [ + 1 takes the two inputs
and either transposes them (if the switch is active) or leaves them unchanged (if the switch is inactive).

A matching of {1,...,n} is a set of pairs {i,5} C {1,...,n} with ¢ # j such that no element from
{1,...,n} appears in more than one pair. A perfect matching of {1,...,n} is a matching of {1,...,n}
of size exactly 3.

Let 991° be the set of all sequences (M, ..., My_1) such that each M; is a perfect matching of {1,...,n}.
For a given M°® = (My,...,My_1) € M°, we define a switching network 91 of depth ? so that the
switches between layers ¢ and i+ 1 are determined by the pairs of matching M;. Every layered network O

corresponding to M®, M® = (Mo, ..., My_1) € 9P defines in a natural way a stochastic process (Markov
chain) (Q)?_, on state space of all permutation of {1,...,n}.
A k-partial n-permutation is any sequence (x, . ..,Z,—1) consisting of k 0s and n— k distinct elements

from 1,...,n — k. The set of all k-partial n-permutations is denoted by S,, ;.. Observe that [S,, x| = Z—,’

Let 9M¢€ be a discrete-time Markov chain with a finite state space Q2 and a unique stationary distribution
pone - For any random variable X, let £(X) denote the probability distribution of X, and let £(Q4| Qo = w)
denote the probability distribution of Q, given that @y = w. The total variation distance between
two probability distributions X and ) over the same finite domain €2 is defined as:

1
drv(X,Y) = glggmrx[s} —Pry[5]| = 3 ;ﬂ |Pry[w] — Pry[w]|

We define the total variation distance after t steps of M€ with respect to initial state w € Q as AY'¢(t) =
dry (L(Q4|Qo = w), pome). Then, the standard measure of the convergence of a Markov chain M€ to
its stationary distribution pope is the mizing time, denoted by Tone(e), which is defined as Tone(e) =
min{7 € N : Vw € Qvt > TAT'¢(t) < ¢}.

A coupling for a Markov chain M€ = (Q;):en on state space (2 is a stochastic process (X, Vi)ien on
Q x Q such that each of (X})ien, (Vi)ien considered independently, is a faithful copy of IMME.

Lemma 2.1 (Delayed Path Coupling Lemma): Let IME = (X;):en be a discrete-time Markov chain
with a finite state space 2. Let ' be any subset of Q2 x Q. Suppose that there is an integer D such that for
every (X,)) € Qx  there exists a sequence X = Ag, Aq,..., A, =Y, where (A;,Aj1q1) €T for 0 <i<r,
and r < D. If there exists a coupling (X, Vi )ien for ME such that for some T' € N, for all (X,Y) €T, it

holds that Pr{Xr # Vr|(Xo, W) = (X,V)] < 5, then

[[L(X7| Xy = X) = LV Vo =V)|| <¢

for every (X,)) € Q x Q. In particular, mpe(e/2) < T.

Random walks on expanders

Let us consider a switching network 91 of depth ? that corresponds to M° = (My,...,My_1 € 9M°.
Define an (I, r)-truncate of M to be the multigraph G = (V, E) on vertex set V = {1,...,n} with the
edge set F consisting of all pairs (4,j) for which there is a path from 4 to j in the netwok induced by



My, M4, ..., Miq,—1; if there are s paths from i to j then we have s edges (i,7) in E. Notice that G is
2"-regular and it has selfloops.

Lemma 2.2: For every r > 4, there is a constant a, 0 < a < 1, such that for almost every switching
network 91 (all but at most a # fraction), for every 0 < I < 0 — r, the {I,r)-truncate G of N is an
(1 — a)-expander.

Let us call a switching network O to be good if there is a constant r and another positive constant a such
that every (i - r,r)-truncate is a (1 — a)-expander, 0 < i < d/r.

Proposition 2.3: Almost all (all but a - fraction) switching networks of logarithmic depth are good.

n2
Proposition 2.4: One can explicitly construct a good switching network 1.

Lemma 3.1: There is a constant ¢ such that if we run the random shuffling process for clog, n steps
with all switches set at random then the probability that two fundamental trees will be build is at least
1—n3.

Lemma 3.2: Let us fix any two sets of p disjoint positions for the leaves of the fundamental trees. There
is a constant ¢ such that if we run the random shuffling process for clog, n steps with all switches set at

random then the probability that there is a fundamental matching is at least 1 — n=3.

Main results

Theorem 3.4: Let kK = Q(n). Let 91 be a good switching network of depth ® with @ > clogn, for a
sufficiently large constant ¢. Then 91 generates random k-partial n-permutations almost uniformly. That
is, for any positive constant c;, if 7 € S, j, is the permutation generated by switching network 9 on an
arbitrary input from S,, ; and p is the uniform distribution over S, j, then dpv (L(7), ) < O(n=°).

Theorem 3.5: For any € > 0, almost every (all but a O(n~2) fraction) switching network 9 of depth
(0 > clogn) almost randomly permutes any set of (1 — £)n elements.

Theorem 3.6: For any € > 0, there is an explicit switching network 91 of depth d (0 > clogn) that
almost randomly permutes any set of (1 — e)n elements.

Theorem 3.8: Let ¢y be an arbitrary constant. There is an explicit switching network 91 of depth
O(log? n) and with O(nlogn) switches such that if 7 € S,, denotes the permutation generated by 91 and
p is the uniform distribution over S,,, then dry (L(7), 1) < O(n~°2).



