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Definitions

A switching network N of depth d is a layered network with d + 1 layers, each layer having n nodes.
The nodes between consecutive layers are connected by disjoint switches.

A switch between two input nodes at layer l and two output nodes at layer l + 1 takes the two inputs
and either transposes them (if the switch is active) or leaves them unchanged (if the switch is inactive).

A matching of {1, . . . , n} is a set of pairs {i, j} ⊆ {1, . . . , n} with i 6= j such that no element from
{1, . . . , n} appears in more than one pair. A perfect matching of {1, . . . , n} is a matching of {1, . . . , n}
of size exactly n
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Let Md be the set of all sequences (M0, . . . ,Md−1) such that each Mt is a perfect matching of {1, . . . , n}.
For a given Md = (M0, . . . ,Md−1) ∈ Md, we define a switching network N of depth d so that the
switches between layers i and i+1 are determined by the pairs of matching Mi. Every layered network N
corresponding to Md, Md = (M0, . . . ,Md−1) ∈Md defines in a natural way a stochastic process (Markov
chain) (Q)dt=0 on state space of all permutation of {1, . . . , n}.

A k-partial n-permutation is any sequence 〈x0, . . . , xn−1〉 consisting of k 0s and n−k distinct elements
from 1, . . . , n− k. The set of all k-partial n-permutations is denoted by Sn,k. Observe that |Sn,k| = n!

k! .

Let MC be a discrete-time Markov chain with a finite state space Ω and a unique stationary distribution
µMC. For any random variable X, let L(X) denote the probability distribution of X, and let L(Qt|Q0 = ω)
denote the probability distribution of Qt given that Q0 = ω. The total variation distance between
two probability distributions X and Y over the same finite domain Ω is defined as:

dTV (X ,Y) = max
S⊆Ω
|PrX [S]−PrY [S]| = 1
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∑
ω∈Ω

|PrX [ω]−PrY [ω]|

We define the total variation distance after t steps of MC with respect to initial state ω ∈ Ω as ∆MC
ω (t) =

dTV (L(Qt|Q0 = ω), µMC). Then, the standard measure of the convergence of a Markov chain MC to
its stationary distribution µMC is the mixing time, denoted by τMC(ε), which is defined as τMC(ε) =
min{T ∈ N : ∀ω ∈ Ω∀t ≥ T∆MC

ω (t) ≤ ε}.

A coupling for a Markov chain MC = (Qt)t∈N on state space Ω is a stochastic process (Xt,Yt)t∈N on
Ω× Ω such that each of (Xt)t∈N, (Yt)t∈N considered independently, is a faithful copy of MC.

Lemma 2.1 (Delayed Path Coupling Lemma): Let MC = (Xt)t∈N be a discrete-time Markov chain
with a finite state space Ω. Let Γ be any subset of Ω×Ω. Suppose that there is an integer D such that for
every (X ,Y) ∈ Ω×Ω there exists a sequence X = Λ0,Λ1, . . . ,Λr = Y, where (Λi,Λi+1) ∈ Γ for 0 ≤ i < r,
and r ≤ D. If there exists a coupling (Xt,Yt)t∈N for MC such that for some T ∈ N, for all (X ,Y) ∈ Γ, it
holds that Pr[XT 6= YT |(X0,Y0) = (X ,Y)] ≤ ε

D , then

||L(XT |X0 = X )− L(YT |Y0 = Y)|| ≤ ε

for every (X ,Y) ∈ Ω× Ω. In particular, τMC(ε/2) ≤ T .

Random walks on expanders

Let us consider a switching network N of depth d that corresponds to Md = (M0, . . . ,Md−1 ∈ Md.
Define an 〈l, r〉-truncate of N to be the multigraph G = (V,E) on vertex set V = {1, . . . , n} with the
edge set E consisting of all pairs (i, j) for which there is a path from i to j in the netwok induced by
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Ml,Ml+1, . . . ,Ml+r−1; if there are s paths from i to j then we have s edges (i, j) in E. Notice that G is
2r-regular and it has selfloops.

Lemma 2.2: For every r ≥ 4, there is a constant a, 0 < a < 1, such that for almost every switching
network N (all but at most a 1

n2 fraction), for every 0 ≤ l ≤ d − r, the 〈l, r〉-truncate G of N is an
(1− a)-expander.

Let us call a switching network N to be good if there is a constant r and another positive constant a such
that every 〈i · r, r〉-truncate is a (1− a)-expander, 0 ≤ i < d/r.

Proposition 2.3: Almost all (all but a 1
n2 fraction) switching networks of logarithmic depth are good.

Proposition 2.4: One can explicitly construct a good switching network N.

Lemma 3.1: There is a constant c such that if we run the random shuffling process for c log2 n steps
with all switches set at random then the probability that two fundamental trees will be build is at least
1− n−3.

Lemma 3.2: Let us fix any two sets of ρ disjoint positions for the leaves of the fundamental trees. There
is a constant c such that if we run the random shuffling process for c log2 n steps with all switches set at
random then the probability that there is a fundamental matching is at least 1− n−3.

Main results

Theorem 3.4: Let k = Ω(n). Let N be a good switching network of depth d with d ≥ c log n, for a
sufficiently large constant c. Then N generates random k-partial n-permutations almost uniformly. That
is, for any positive constant c1, if π ∈ Sn,k, is the permutation generated by switching network N on an
arbitrary input from Sn,k and µ is the uniform distribution over Sn,k, then dTV (L(π), µ) ≤ O(n−c1).

Theorem 3.5: For any ε > 0, almost every (all but a O(n−2) fraction) switching network N of depth d
(d ≥ c log n) almost randomly permutes any set of (1− ε)n elements.

Theorem 3.6: For any ε > 0, there is an explicit switching network N of depth d (d ≥ c log n) that
almost randomly permutes any set of (1− ε)n elements.

Theorem 3.8: Let c2 be an arbitrary constant. There is an explicit switching network N of depth
O(log2 n) and with O(n log n) switches such that if π ∈ Sn denotes the permutation generated by N and
µ is the uniform distribution over Sn, then dTV (L(π), µ) ≤ O(n−c2).
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