Random Permutations using Switching Networks

by Artur Czumaj
Presented by Jan Musílek

Definitions

A switching network \mathfrak{N} of depth \mathfrak{d} is a layered network with $\mathfrak{d}+1$ layers, each layer having n nodes. The nodes between consecutive layers are connected by disjoint switches.
A switch between two input nodes at layer l and two output nodes at layer $l+1$ takes the two inputs and either transposes them (if the switch is active) or leaves them unchanged (if the switch is inactive).
A matching of $\{1, \ldots, n\}$ is a set of pairs $\{i, j\} \subseteq\{1, \ldots, n\}$ with $i \neq j$ such that no element from $\{1, \ldots, n\}$ appears in more than one pair. A perfect matching of $\{1, \ldots, n\}$ is a matching of $\{1, \ldots, n\}$ of size exactly $\frac{n}{2}$.
Let $\mathfrak{M}^{\mathfrak{d}}$ be the set of all sequences $\left(M_{0}, \ldots, M_{\mathfrak{d}-1}\right)$ such that each M_{t} is a perfect matching of $\{1, \ldots, n\}$. For a given $M^{\mathfrak{d}}=\left(M_{0}, \ldots, M_{\mathfrak{d}-1}\right) \in \mathfrak{M}^{\mathfrak{d}}$, we define a switching network \mathfrak{N} of depth \mathfrak{d} so that the switches between layers i and $i+1$ are determined by the pairs of matching M_{i}. Every layered network \mathfrak{N} corresponding to $M^{\mathfrak{d}}, M^{\mathfrak{d}}=\left(M_{0}, \ldots, M_{\mathfrak{d}-1}\right) \in \mathfrak{M}^{\mathfrak{d}}$ defines in a natural way a stochastic process (Markov chain) $(\mathcal{Q})_{t=0}^{\mathfrak{d}}$ on state space of all permutation of $\{1, \ldots, n\}$.
A k-partial n-permutation is any sequence $\left\langle x_{0}, \ldots, x_{n-1}\right\rangle$ consisting of $k 0$ s and $n-k$ distinct elements from $1, \ldots, n-k$. The set of all k-partial n-permutations is denoted by $\mathbb{S}_{n, k}$. Observe that $\left|\mathbb{S}_{n, k}\right|=\frac{n!}{k!}$.
Let $\mathfrak{M C}$ be a discrete-time Markov chain with a finite state space Ω and a unique stationary distribution $\mu_{\mathfrak{M C}}$. For any random variable X, let $\mathcal{L}(X)$ denote the probability distribution of X, and let $\mathcal{L}\left(\mathcal{Q}_{t} \mid \mathcal{Q}_{0}=\omega\right)$ denote the probability distribution of \mathcal{Q}_{t} given that $\mathcal{Q}_{0}=\omega$. The total variation distance between two probability distributions \mathcal{X} and \mathcal{Y} over the same finite domain Ω is defined as:

$$
d_{T V}(\mathcal{X}, \mathcal{Y})=\max _{S \subseteq \Omega}\left|\operatorname{Pr}_{\mathcal{X}}[S]-\operatorname{Pr}_{\mathcal{Y}}[S]\right|=\frac{1}{2} \sum_{\omega \in \Omega}\left|\operatorname{Pr}_{\mathcal{X}}[\omega]-\operatorname{Pr}_{\mathcal{Y}}[\omega]\right|
$$

We define the total variation distance after t steps of $\mathfrak{M C}$ with respect to initial state $\omega \in \Omega$ as $\Delta_{\omega}^{\mathfrak{M C}}(t)=$ $d_{T V}\left(\mathcal{L}\left(\mathcal{Q}_{t} \mid \mathcal{Q}_{0}=\omega\right), \mu_{\mathfrak{M C}}\right)$. Then, the standard measure of the convergence of a Markov chain $\mathfrak{M C}$ to its stationary distribution $\mu_{\mathfrak{M C}}$ is the mixing time, denoted by $\tau_{\mathfrak{M C}}(\varepsilon)$, which is defined as $\tau_{\mathfrak{M C}}(\varepsilon)=$ $\min \left\{T \in \mathbb{N}: \forall \omega \in \Omega \forall t \geq T \Delta_{\omega}^{\mathfrak{M c}}(t) \leq \varepsilon\right\}$.

A coupling for a Markov chain $\mathfrak{M C}=\left(\mathcal{Q}_{t}\right)_{t \in \mathbb{N}}$ on state space Ω is a stochastic process $\left(\mathcal{X}_{t}, \mathcal{Y}_{t}\right)_{t \in \mathbb{N}}$ on $\Omega \times \Omega$ such that each of $\left(\mathcal{X}_{t}\right)_{t \in \mathbb{N}},\left(\mathcal{Y}_{t}\right)_{t \in \mathbb{N}}$ considered independently, is a faithful copy of $\mathfrak{M C}$.
Lemma 2.1 (Delayed Path Coupling Lemma): Let $\mathfrak{M C}=\left(\mathcal{X}_{t}\right)_{t \in \mathbb{N}}$ be a discrete-time Markov chain with a finite state space Ω. Let Γ be any subset of $\Omega \times \Omega$. Suppose that there is an integer D such that for every $(\mathcal{X}, \mathcal{Y}) \in \Omega \times \Omega$ there exists a sequence $\mathcal{X}=\Lambda_{0}, \Lambda_{1}, \ldots, \Lambda_{r}=\mathcal{Y}$, where $\left(\Lambda_{i}, \Lambda_{i+1}\right) \in \Gamma$ for $0 \leq i<r$, and $r \leq D$. If there exists a coupling $\left(\mathcal{X}_{t}, \mathcal{Y}_{t}\right)_{t \in \mathbb{N}}$ for $\mathfrak{M C}$ such that for some $T \in \mathbb{N}$, for all $(\mathcal{X}, \mathcal{Y}) \in \Gamma$, it holds that $\operatorname{Pr}\left[\mathcal{X}_{T} \neq \mathcal{Y}_{T} \mid\left(\mathcal{X}_{0}, \mathcal{Y}_{0}\right)=(\mathcal{X}, \mathcal{Y})\right] \leq \frac{\varepsilon}{D}$, then

$$
\left\|\mathcal{L}\left(\mathcal{X}_{T} \mid \mathcal{X}_{0}=\mathcal{X}\right)-\mathcal{L}\left(\mathcal{Y}_{T} \mid \mathcal{Y}_{0}=\mathcal{Y}\right)\right\| \leq \varepsilon
$$

for every $(\mathcal{X}, \mathcal{Y}) \in \Omega \times \Omega$. In particular, $\tau_{\mathfrak{M C}}(\varepsilon / 2) \leq T$.

Random walks on expanders

Let us consider a switching network \mathfrak{N} of depth \mathfrak{d} that corresponds to $M^{\mathfrak{O}}=\left(M_{0}, \ldots, M_{\mathfrak{d}-1} \in \mathfrak{M}^{\mathfrak{D}}\right.$. Define an $\langle l, r\rangle$-truncate of \mathfrak{N} to be the multigraph $G=(V, E)$ on vertex set $V=\{1, \ldots, n\}$ with the edge set E consisting of all pairs (i, j) for which there is a path from i to j in the netwok induced by
$M_{l}, M_{l+1}, \ldots, M_{l+r-1}$; if there are s paths from i to j then we have s edges (i, j) in E. Notice that G is 2^{r}-regular and it has selfloops.
Lemma 2.2: For every $r \geq 4$, there is a constant $a, 0<a<1$, such that for almost every switching network \mathfrak{N} (all but at most a $\frac{1}{n^{2}}$ fraction), for every $0 \leq l \leq \mathfrak{d}-r$, the $\langle l, r\rangle$-truncate G of \mathfrak{N} is an $(1-a)$-expander.

Let us call a switching network \mathfrak{N} to be $\mathfrak{g o o d}$ if there is a constant r and another positive constant a such that every $\langle i \cdot r, r\rangle$-truncate is a $(1-a)$-expander, $0 \leq i<\mathfrak{d} / r$.
Proposition 2.3: Almost all (all but a $\frac{1}{n^{2}}$ fraction) switching networks of logarithmic depth are $\mathfrak{g o o d}$.
Proposition 2.4: One can explicitly construct a $\mathfrak{g o o d}$ switching network \mathfrak{N}.
Lemma 3.1: There is a constant c such that if we run the random shuffling process for $c \log _{2} n$ steps with all switches set at random then the probability that two fundamental trees will be build is at least $1-n^{-3}$.

Lemma 3.2: Let us fix any two sets of ρ disjoint positions for the leaves of the fundamental trees. There is a constant c such that if we run the random shuffling process for $c \log _{2} n$ steps with all switches set at random then the probability that there is a fundamental matching is at least $1-n^{-3}$.

Main results

Theorem 3.4: Let $k=\Omega(n)$. Let \mathfrak{N} be a $\mathfrak{g o o d}$ switching network of depth \mathfrak{d} with $\mathfrak{d} \geq c \log n$, for a sufficiently large constant c. Then \mathfrak{N} generates random k-partial n-permutations almost uniformly. That is, for any positive constant c_{1}, if $\pi \in \mathbb{S}_{n, k}$, is the permutation generated by switching network \mathfrak{N} on an arbitrary input from $\mathbb{S}_{n, k}$ and μ is the uniform distribution over $\mathbb{S}_{n, k}$, then $d_{T V}(\mathcal{L}(\pi), \mu) \leq \mathcal{O}\left(n^{-c_{1}}\right)$.

Theorem 3.5: For any $\varepsilon>0$, almost every (all but a $\mathcal{O}\left(n^{-2}\right)$ fraction) switching network \mathfrak{N} of depth \mathfrak{d} $(\mathfrak{d} \geq c \log n)$ almost randomly permutes any set of $(1-\varepsilon) n$ elements.

Theorem 3.6: For any $\varepsilon>0$, there is an explicit switching network \mathfrak{N} of depth $\mathfrak{d}(\mathfrak{d} \geq c \log n)$ that almost randomly permutes any set of $(1-\varepsilon) n$ elements.
Theorem 3.8: Let c_{2} be an arbitrary constant. There is an explicit switching network \mathfrak{N} of depth $\mathcal{O}\left(\log ^{2} n\right)$ and with $\mathcal{O}(n \log n)$ switches such that if $\pi \in \mathbb{S}_{n}$ denotes the permutation generated by \mathfrak{N} and μ is the uniform distribution over \mathbb{S}_{n}, then $d_{T V}(\mathcal{L}(\pi), \mu) \leq \mathcal{O}\left(n^{-c_{2}}\right)$.

