On the number of monotone sequences

by Wojciech Samotij and Benny Sudakov

presented by Martin Balko

The problem:

• We call a sequence σ of n numbers an n-sequence. We assume that σ is a permutation of [n], i.e., $\sigma \in S_n$.

Problem. Determine the minimum number of monotone (that is, monotonically increasing or monotonically decreasing) subsequences of length k + 1 in an n-sequence.

Theorem 1 (The Erdős–Szekeres Theorem, 1935). For every $k, n \in \mathbb{N}$, every *n*-sequence contains at least $n - k^2$ monotone subsequences of length k + 1.

- Let $\tau_{k,n}$ be a sequence of k increasing sequences of length $\lfloor n/k \rfloor$ or $\lceil n/k \rceil$ that are concatenated in decreasing order.
- For $\sigma \in S_n$, let $m_k(n)$ be the number of monotone subsequences of length k + 1 in σ and let $m_k(n) := \min\{m_k(\sigma) : \sigma \in S_n\}$. Let $r_{k,n}$ be the unique number $r \in \{0, \ldots, k-1\}$ satisfying $r \equiv n \pmod{k}$.

Conjecture 2 (Myers, 2002-2003). For all k and n,

$$m_k(n) = m_k(\tau_{k,n}) = r_{k,n} \binom{\lceil n/k \rceil}{k+1} + (k - r_{k,n}) \binom{\lfloor n/k \rfloor}{k+1}.$$

Main result:

• The conjecture of Myers is true for all sufficiently large k, as long as n is not much larger than k^2 .

Theorem 3. There exist an integer k_0 and a number $c \in \mathbb{R}^+$ such that $m_k(n) = m_k(\tau_{k,n})$ for all kand n satisfying $k \ge k_0$ and $n \le k^2 + ck^{3/2}/\log k$. Moreover, if $n \ne k^2 + k + 1$ and $m_k(\sigma) = m_k(n)$ for some $\sigma \in S_n$, then σ contains monotone subsequences of length k + 1 of only one type (increasing or decreasing).

• Surprisingly, if $n = k^2 + k + 1$, then there are $\sigma \in S_n$ with $m_k(\sigma) = m_k(n) = 2k + 1$ which contain both increasing and decreasing subsequences of length k + 1.

Reformulation of the main result:

- Every $\sigma \in S_n$ admits a natural representation as a poset $P_{\sigma} = ([n], \leq_{\sigma})$ in which its increasing and decreasing subsequences are mapped to chains and antichains, respectively, of the same length.
- A set A of elements of a poset is *homogenous* if A is a chain or an antichain.
- Given a poset P, let $h_k(P)$ be the number of homogenous (k+1)-element sets in P and let $h_k(n) := \min\{h_k(P): P \text{ is a poset with } n \text{ elements}\}.$

Problem. For every k and n, determine the minimum number of homogenous (k + 1)-element sets in a poset with n elements. In particular, is it true that $h_k(n) = m_k(n)$ for all k and n?

• For a poset P of order dimension at most two (that is, P is the intersection of two linear orders), a dual poset P^* is a poset on [n] such that every pair of elements is comparable in either P or P^* but not both of them.

Theorem 4. There exist an integer k_0 and $c \in \mathbb{R}^+$ such that the following is true. Let k and n be integers satisfying $k \ge k_0$ and $n \le k^2 + ck^{3/2}/\log k$. If P is an n-element poset of order dimension at most two, then

$$h_k(P) \ge m_k(\tau_{k,n}).$$

Moreover, if $h_k(P) = m_k(\tau_{k,n})$ and $n \neq k^2 + k + 1$, then P can be decomposed into k chains or k antichains of length $\lfloor n/k \rfloor$ or $\lceil n/k \rceil$ each.

If $h_k(P) = m_k(\tau_{k,n})$ and $n = k^2 + k + 1$, then P (or P^*) can additionally belong to one of two families of n-element posets with exactly 2k + 1 homogenous (k + 1)-sets that contain both chains and antichains with k + 1 elements.

Some notation:

- Let (P, \leq) be a poset. The *height* h(P) and the *width* w(P) of P are the cardinalities of the largest chain and the largest antichain in P, respectively.
- For every positive integer i, let $A_i := \{x \in P : \text{the longest chain } L \text{ with } \max L = x \text{ has } i \text{ elements} \}.$
- Let G_i be the bipartite graph on the vertex set $A_i \cup A_{i+1}$ whose edges are all pairs xy with $x \in A_i$ and $y \in A_{i+1}$ such that $x \leq y$.
- For $i \in [h(P)]$ and $x \in A_i$, let $u_i(x)$ be the number of chains $L \subseteq P$ of length h i + 1 with min L = x.
- We define $A'_i := \{x \in A_i : u_i(x) \ge 1\}, \Sigma_i := \sum_{x \in A_i} u_i(x), \text{ and } B_{i+1} := \{y \in A'_{i+1} : \deg_{G_i}(y) = 1\}.$
- The k-surplus $s_k(P)$ of P is defined by $s_k(P) := n h(P)k$. It measures the distance between a poset P and a union of k chains.

Outline of the proof of Theorem 4:

- We proceed by induction on n tacitly assuming $h(P) \ge w(P)$.
- Each $x \in P$ that is contained in at least $m_k(\tau_{k,n}) m_k(\tau_{k,n-1})$ homogenous (k+1)-sets can be removed.
- We first show that if P is 'far' from being a union of k chains (or k antichains), then $m_k(P)$ is much larger than $m_k(\tau_{k,n})$ (Corollary 7).
- We prove a sequence of lower bounds on Σ_1 . By Lemma 8, for each *i* such that $A_i \cup A_{i+1}$ contains an antichain of length k+1 either $\Sigma_i \Sigma_{i+1}$ is large or $A_i \cup A_{i+1}$ contains many (k+1)-element antichains. Each of these situations implies $h_k(P) > m_k(\tau_{k,n})$. Here, Corollary 10 translates lower bounds on Σ_1 to lower bounds on $h_k(P)$. The proof of each of the bounds on Σ_1 relies on the analysis of the graphs G_i .
- If P does not satisfy any of these conditions, then P becomes greatly restricted. A careful case analysis then shows that $h_k(P) \ge m_k(\tau_{k,n})$ and this is strict unless $n = k^2 + k + 1$ and P (or P^*) belongs to one of the two special families of posets.

Lemma 5. Suppose that $a \ge b > 0$, let \mathcal{F} be an arbitrary family of a-element sets, and define

$$\partial_b \mathcal{F} := \{ B \colon |B| = b \text{ and } B \subseteq A \text{ for some } A \in \mathcal{F} \}.$$

Then $|\partial_b \mathcal{F}| \ge \min\{|\mathcal{F}|/2, 2^b\}.$

Lemma 6. Let d, k, and s be integers satisfying $1 \le d \le k$ and suppose that P is a poset such that $s_k(P) \ge s$ and deletion of no s/2 elements reduces the height of P. Then P contains either at least 2^d antichains with k+1 elements or at least $2^{\lfloor s/(2d) \rfloor}$ chains of length h(P).

Corollary 7. Let k and t be integers satisfying $0 < t \le k/2$ and suppose that P is a poset of order dimension at most two such that $h(P) \ge w(P)$ and $s_k(P) \ge 3t$. Then P contains at least $2^{\sqrt{t}-1}$ homogenous (k+1)-sets.

Lemma 8 (Key lemma). Let $\ell := \lceil n/k \rceil - k - 1$ and $F := \{i \in [k+\ell] : |A_i| \ge k+1\}$. If $i \in F \cap [k+\ell-1]$, then $A_i \cup B_{i+1}$ contains at least $2^{\min\{k,|B_{i+1}|\}}$ antichains with k+1 elements and

$$\Sigma_i \ge \Sigma_{i+1} + \sum_{y \in A'_{i+1} \setminus B_{i+1}} u_{i+1}(y) \ge \Sigma_{i+1} + |A'_{i+1}| - |B_{i+1}|.$$

Lemma 9. Suppose that M is a positive integer, X and Y are arbitrary sets, and $f_1, \ldots, f_M : X \to Y$ are pairwise different functions. There exist sets $X_1, \ldots, X_M \subseteq X$ with $|X_i| \leq \log_2 M$ for all $i \in [M]$ such that

$$f_i \upharpoonright_{X_i \cup X_j} \neq f_j \upharpoonright_{X_i \cup X_j}$$
 for all $i \neq j$

Corollary 10. Let k, ℓ , and M be positive integers, let P be a poset of height $k + \ell$, and suppose that $m := \log_2 M + 1 \le k/4$.

(i) If P contains at least M chains of length $k + \ell$, then it contains at least

$$\exp\left(-\frac{2(\ell-1)m}{k}\right) \cdot M\binom{k+\ell}{k+1}$$

chains of length k + 1.

(ii) Given any $y \in P$, (i) still holds if we replace 'chains' with 'chains containing y'.