On the number of monotone sequences

by Wojciech Samotij and Benny Sudakov
presented by Martin Balko

The problem:

- We call a sequence σ of n numbers an n-sequence. We assume that σ is a permutation of $[n]$, i.e., $\sigma \in S_{n}$.

Problem. Determine the minimum number of monotone (that is, monotonically increasing or monotonically decreasing) subsequences of length $k+1$ in an n-sequence.

Theorem 1 (The Erdős-Szekeres Theorem, 1935). For every $k, n \in \mathbb{N}$, every n-sequence contains at least $n-k^{2}$ monotone subsequences of length $k+1$.

- Let $\tau_{k, n}$ be a sequence of k increasing sequences of length $\lfloor n / k\rfloor$ or $\lceil n / k\rceil$ that are concatenated in decreasing order.
- For $\sigma \in S_{n}$, let $m_{k}(n)$ be the number of monotone subsequences of length $k+1$ in σ and let $m_{k}(n):=$ $\min \left\{m_{k}(\sigma): \sigma \in S_{n}\right\}$. Let $r_{k, n}$ be the unique number $r \in\{0, \ldots, k-1\}$ satisfying $r \equiv n(\bmod k)$.

Conjecture 2 (Myers, 2002-2003). For all k and n,

$$
m_{k}(n)=m_{k}\left(\tau_{k, n}\right)=r_{k, n}\binom{\lceil n / k\rceil}{ k+1}+\left(k-r_{k, n}\right)\binom{\lfloor n / k\rfloor}{ k+1} .
$$

Main result:

- The conjecture of Myers is true for all sufficiently large k, as long as n is not much larger than k^{2}.

Theorem 3. There exist an integer k_{0} and a number $c \in \mathbb{R}^{+}$such that $m_{k}(n)=m_{k}\left(\tau_{k, n}\right)$ for all k and n satisfying $k \geq k_{0}$ and $n \leq k^{2}+c k^{3 / 2} / \log k$. Moreover, if $n \neq k^{2}+k+1$ and $m_{k}(\sigma)=m_{k}(n)$ for some $\sigma \in S_{n}$, then σ contains monotone subsequences of length $k+1$ of only one type (increasing or decreasing).

- Surprisingly, if $n=k^{2}+k+1$, then there are $\sigma \in S_{n}$ with $m_{k}(\sigma)=m_{k}(n)=2 k+1$ which contain both increasing and decreasing subsequences of length $k+1$.

Reformulation of the main result:

- Every $\sigma \in S_{n}$ admits a natural representation as a poset $P_{\sigma}=\left([n], \leq_{\sigma}\right)$ in which its increasing and decreasing subsequences are mapped to chains and antichains, respectively, of the same length.
- A set A of elements of a poset is homogenous if A is a chain or an antichain.
- Given a poset P, let $h_{k}(P)$ be the number of homogenous $(k+1)$-element sets in P and let $h_{k}(n):=$ $\min \left\{h_{k}(P): P\right.$ is a poset with n elements $\}$.
Problem. For every k and n, determine the minimum number of homogenous $(k+1)$-element sets in a poset with n elements. In particular, is it true that $h_{k}(n)=m_{k}(n)$ for all k and n ?
- For a poset P of order dimension at most two (that is, P is the intersection of two linear orders), a dual poset P^{*} is a poset on $[n]$ such that every pair of elements is comparable in either P or P^{*} but not both of them.

Theorem 4. There exist an integer k_{0} and $c \in \mathbb{R}^{+}$such that the following is true. Let k and n be integers satisfying $k \geq k_{0}$ and $n \leq k^{2}+c k^{3 / 2} / \log k$. If P is an n-element poset of order dimension at most two, then

$$
h_{k}(P) \geq m_{k}\left(\tau_{k, n}\right)
$$

Moreover, if $h_{k}(P)=m_{k}\left(\tau_{k, n}\right)$ and $n \neq k^{2}+k+1$, then P can be decomposed into k chains or k antichains of length $\lfloor n / k\rfloor$ or $\lceil n / k\rceil$ each.
If $h_{k}(P)=m_{k}\left(\tau_{k, n}\right)$ and $n=k^{2}+k+1$, then P (or $\left.P^{*}\right)$ can additionally belong to one of two families of n-element posets with exactly $2 k+1$ homogenous $(k+1)$-sets that contain both chains and antichains with $k+1$ elements.

Some notation:

- Let (P, \leq) be a poset. The height $h(P)$ and the width $w(P)$ of P are the cardinalities of the largest chain and the largest antichain in P, respectively.
- For every positive integer i, let $A_{i}:=\{x \in P$: the longest chain L with max $L=x$ has i elements $\}$.
- Let G_{i} be the bipartite graph on the vertex set $A_{i} \cup A_{i+1}$ whose edges are all pairs $x y$ with $x \in A_{i}$ and $y \in A_{i+1}$ such that $x \leq y$.
- For $i \in[h(P)]$ and $x \in A_{i}$, let $u_{i}(x)$ be the number of chains $L \subseteq P$ of length $h-i+1$ with min $L=x$.
- We define $A_{i}^{\prime}:=\left\{x \in A_{i}: u_{i}(x) \geq 1\right\}, \Sigma_{i}:=\sum_{x \in A_{i}} u_{i}(x)$, and $B_{i+1}:=\left\{y \in A_{i+1}^{\prime}: \operatorname{deg}_{G_{i}}(y)=1\right\}$.
- The k-surplus $s_{k}(P)$ of P is defined by $s_{k}(P):=n-h(P) k$. It measures the distance between a poset P and a union of k chains.

Outline of the proof of Theorem 4;

- We proceed by induction on n tacitly assuming $h(P) \geq w(P)$.
- Each $x \in P$ that is contained in at least $m_{k}\left(\tau_{k, n}\right)-m_{k}\left(\tau_{k, n-1}\right)$ homogenous $(k+1)$-sets can be removed.
- We first show that if P is 'far' from being a union of k chains (or k antichains), then $m_{k}(P)$ is much larger than $m_{k}\left(\tau_{k, n}\right)$ (Corollary 7).
- We prove a sequence of lower bounds on Σ_{1}. By Lemma 8, for each i such that $A_{i} \cup A_{i+1}$ contains an antichain of length $k+1$ either $\Sigma_{i}-\Sigma_{i+1}$ is large or $A_{i} \cup A_{i+1}$ contains many ($k+1$)-element antichains. Each of these situations implies $h_{k}(P)>m_{k}\left(\tau_{k, n}\right)$. Here, Corollary 10 translates lower bounds on Σ_{1} to lower bounds on $h_{k}(P)$. The proof of each of the bounds on Σ_{1} relies on the analysis of the graphs G_{i}.
- If P does not satisfy any of these conditions, then P becomes greatly restricted. A careful case analysis then shows that $h_{k}(P) \geq m_{k}\left(\tau_{k, n}\right)$ and this is strict unless $n=k^{2}+k+1$ and P (or P^{*}) belongs to one of the two special families of posets.

Lemma 5. Suppose that $a \geq b>0$, let \mathcal{F} be an arbitrary family of a-element sets, and define

$$
\partial_{b} \mathcal{F}:=\{B:|B|=b \text { and } B \subseteq A \text { for some } A \in \mathcal{F}\}
$$

Then $\left|\partial_{b} \mathcal{F}\right| \geq \min \left\{|\mathcal{F}| / 2,2^{b}\right\}$.
Lemma 6. Let d, k, and s be integers satisfying $1 \leq d \leq k$ and suppose that P is a poset such that $s_{k}(P) \geq s$ and deletion of no $s / 2$ elements reduces the height of P. Then P contains either at least 2^{d} antichains with $k+1$ elements or at least $\left.2^{\lfloor s /(2 d)}\right\rfloor$ chains of length $h(P)$.
Corollary 7. Let k and t be integers satisfying $0<t \leq k / 2$ and suppose that P is a poset of order dimension at most two such that $h(P) \geq w(P)$ and $s_{k}(P) \geq 3$ t. Then P contains at least $2^{\sqrt{t}-1}$ homogenous $(k+1)$-sets.

Lemma 8 (Key lemma). Let $\ell:=\lceil n / k\rceil-k-1$ and $F:=\left\{i \in[k+\ell]:\left|A_{i}\right| \geq k+1\right\}$. If $i \in F \cap[k+\ell-1]$, then $A_{i} \cup B_{i+1}$ contains at least $2^{\min \left\{k,\left|B_{i+1}\right|\right\}}$ antichains with $k+1$ elements and

$$
\Sigma_{i} \geq \Sigma_{i+1}+\sum_{y \in A_{i+1}^{\prime} \backslash B_{i+1}} u_{i+1}(y) \geq \Sigma_{i+1}+\left|A_{i+1}^{\prime}\right|-\left|B_{i+1}\right| .
$$

Lemma 9. Suppose that M is a positive integer, X and Y are arbitrary sets, and $f_{1}, \ldots, f_{M}: X \rightarrow Y$ are pairwise different functions. There exist sets $X_{1}, \ldots, X_{M} \subseteq X$ with $\left|X_{i}\right| \leq \log _{2} M$ for all $i \in[M]$ such that

$$
f_{i} \upharpoonright_{X_{i} \cup X_{j}} \neq f_{j} \upharpoonright_{X_{i} \cup X_{j}} \quad \text { for all } i \neq j .
$$

Corollary 10. Let k, ℓ, and M be positive integers, let P be a poset of height $k+\ell$, and suppose that $m:=\log _{2} M+1 \leq k / 4$.
(i) If P contains at least M chains of length $k+\ell$, then it contains at least

$$
\exp \left(-\frac{2(\ell-1) m}{k}\right) \cdot M\binom{k+\ell}{k+1}
$$

chains of length $k+1$.
(ii) Given any $y \in P$, (i) still holds if we replace 'chains' with 'chains containing y '.

