## Large subgraphs without short cycles

F. Foucaud, M. Krivelevich \& G. Perarnau presented by Vojtěch Kaluža

$$
\text { May 12, } 2016
$$

## Preliminary notation and definitions.

- The letters $F, G, H$ and $\Gamma$ always denote a simple undirected graph.
- We say that a graph $G$ is $F$-free if there is no subgraph of $G$ isomorphic to $F$.
- Turán graphs and Turán numbers - Let $\mathcal{F}$ be a class of graphs. We write $\operatorname{Ex}(G, \mathcal{F})$ for a largest subgraph of $G$ that is $F$-free for every $F \in \mathcal{F}$. We denote by $\operatorname{ex}(G, \mathcal{F})$ the number of edges of $\operatorname{Ex}(G, \mathcal{F})$.
- $f(m, \mathcal{F})=\min \{\operatorname{ex}(G, \mathcal{F}):|E(G)|=m\}$.
- $g(G)$ stands for the girth of $G, \delta(G)$ for its minimum degree and $\Delta(G)$ for its maximum degree.
- $d(G, \mathcal{F})=\max \{\delta(H): V(H)=V(G)$ and $H$ is $\mathcal{F}$-free subgraph of $G\}$.
- $h(\delta, \Delta, \mathcal{F})=\min \{d(G, \mathcal{F}): \delta(G)=\delta$ and $\Delta(G)=\Delta\}$.
- $\chi(F)$ denotes the chromatic number of $F$ and $\chi(\mathcal{F})=\min _{F \in \mathcal{F}} \chi(\mathcal{F})$.
- $\mathcal{F}_{r}=\left\{C_{3}, C_{4}, \ldots, C_{2 r}, C_{2 r+1}\right\}$ and $\mathcal{F}_{r}^{\text {even }}=\left\{C_{4}, C_{6}, \ldots, C_{2 r}\right\}$.


## Results.

Proposition 1: For every graph $G$ and for every $k \geq 3$ there exists a $(k-1)$ partite subgraph $H$ of $G$ such that for every $v \in V(G)$,

$$
d_{H}(v) \geq\left(1-\frac{1}{k-1}\right) d_{G}(v)
$$

Moreover, for every $\mathcal{F}$ with $\chi(\mathcal{F})=k$, we have

$$
f(m, \mathcal{F})=\left(1-\frac{1}{k-1}\right) m+o(m)
$$

and

$$
h(\delta, \Delta, \mathcal{F})=\left(1-\frac{1}{k-1}\right) \delta+o(\delta)
$$

Theorem 2: For every $r \geq 2$ there exists $c=c(r)>0$ such that for every $m \geq m_{0}$,

$$
f(m, r):=f\left(m, \mathcal{F}_{r}^{\text {even }}\right) \geq \frac{c}{\log m} \min _{k \mid m} \operatorname{ex}\left(K_{k, m / k}, \mathcal{F}_{r}^{\text {even }}\right)
$$

Corollary 3: There exists a constant $c>0$ such that for every $m \geq m_{0}$,

$$
f(m, 2) \geq \frac{c m^{2 / 3}}{\log m}
$$

Theorem 4: Let $G$ be a graph with minimum degree $\delta$ and (large enough) maximum degree $\Delta$ such that $\operatorname{ex}\left(K_{\Delta}, \mathcal{F}_{r}\right) \delta \geq \alpha \Delta^{2} \log ^{4} \Delta$ for some large constant $\alpha>0$. Then, for every $r \geq 2$ there exists a spanning subgraph $H$ of $G$ with $g(H) \geq 2 r+2$ and $\delta(H) \geq \frac{c \cdot \operatorname{ex}\left(K_{\Delta}, \mathcal{F}_{r}\right) \delta}{\Delta^{2} \log \Delta}$, for some small constant $c>0$. In particular, under the above conditions on $\delta$ and $\Delta$,

$$
h(\delta, \Delta, r) \geq h\left(\delta, \Delta, \mathcal{F}_{r}\right) \geq \frac{c \cdot \operatorname{ex}\left(K_{\Delta}, \mathcal{F}_{r}\right) \delta}{\Delta^{2} \log \Delta}
$$

Corollary 5: For every $\Delta$ and $\delta$ such that $\operatorname{ex}\left(K_{\Delta}, \mathcal{F}_{r}\right) \delta \geq \alpha \Delta^{2} \log ^{4} \Delta$ for some large constant $\alpha>0$, we have

$$
h(\delta, \Delta, r) \geq h\left(\delta, \Delta, \mathcal{F}_{r}\right)=\Omega\left(\frac{\delta}{\Delta^{1-\frac{2}{3 r-2}} \log \Delta}\right)
$$

## Proofs.

Definition: For every graph $G$, every graph $\Gamma$ with $V(\Gamma)=[\ell]$ and every vertex labeling $\chi: V(G) \rightarrow[\ell]$ we define the spanning subgraph $H_{(\chi, \Gamma)}^{\prime} \subseteq G$ as the subgraph with vertex set $V(G)$ where an edge $e=u v$ is present if and only if $u v \in E(G)$ and $\chi(u) \chi(v) \in E(\Gamma)$.

Definition: For every graph $G$, every graph $\Gamma$ with $V(\Gamma)=[\ell]$ and every vertex labeling $\chi: V(G) \rightarrow[\ell]$ we define the spanning subgraph $H_{(\chi, \Gamma)}^{*} \subseteq G$ as the subgraph with vertex set $V(G)$ such that an edge $e=u v$ is present in $H^{*}$ if all the following properties are satisfied:

1. $u v \in E(G)$ and $\chi(u) \chi(v) \in E(\Gamma)$, that is $e \in E\left(H^{\prime}\right)$,
2. for every $w \neq v, w \in N_{G}(u)$, we have $\chi(w) \neq \chi(v)$, and
3. for every $w \neq u, w \in N_{G}(v)$, we have $\chi(w) \neq \chi(u)$.

- We say that a colouring $\chi: V(G) \rightarrow[l]$ is $t$-frugal if for every $v \in V(G)$ and every colour $c \in[l]$ we have $\left|N_{G}(v) \cap \chi^{-1}(c)\right| \leq t$; that is, $v$ is a neighbour of at most $t$ vertices of the same colour.
- A cycle in a coloured graph $G$ is called rainbow if all its vertices have distinct colour.
A path in $G$ is called inner-rainbow if its both endpoints have the same colour $c$ and all other vertices of the path are coloured with distinct colours different from $c$.

Lemma 13: Let $G$ be a graph with maximum degree $\Delta$ and minimum degree $\delta$ that admits a $t$-frugal coloring $\chi$ without rainbow cycles of length at most $2 r+1$ and maximal inner-rainbow paths of length $l$ for every $3 \leq l \leq 2 r$. If $\delta>129 t^{3} \log \Delta$ and $\Delta$ is large enough, then there exists a subgraph $H \subseteq G$ such that

1. $\forall v \in V(G), d_{H}(v) \geq \frac{d_{G}(v)}{4 t}$, and
2. $g(H) \geq 2 r+2$.

## Probabilistic tools.

Lemma (Chernoff inequality for binomial distributions): Let $X \sim$ $\operatorname{Bin}(N, p)$ be a Binomial random variable. Then for all $0<\varepsilon<1$,

$$
\operatorname{Pr}(X \leq(1-\varepsilon) N p)<\exp \left(-\frac{\varepsilon^{2}}{2} N p\right)
$$

Lemma (Azuma inequality): Let $L: S^{T} \rightarrow \mathbb{R}$ be a functional such that for every $g$ and $g^{\prime}$ differing in just one coordinate from the product space $S^{T}$, we have $\left|L(g)-L\left(g^{\prime}\right)\right| \leq 1$. Let $|T|=l$. Then for all $\lambda>0$

1. $\operatorname{Pr}(L \leq \mathbb{E}(L)-\lambda \sqrt{l})<e^{-\frac{\lambda^{2}}{2}}$,
2. $\operatorname{Pr}(L \geq \mathbb{E}(L)+\lambda \sqrt{l})<e^{-\frac{\lambda^{2}}{2}}$.

Lemma (Weighted Lovász Local Lemma): Let $\mathcal{A}=\left\{A_{1}, \ldots, A_{N}\right\}$ be a set of events and let $H$ be a dependency graph for $\mathcal{A}$. If there exist weights $w_{1}, \ldots, w_{N} \geq 1$ and a real $p \leq \frac{1}{4}$ such that for each $i \in[N]$ :

1. $\operatorname{Pr}\left(A_{i}\right) \leq p^{w_{i}}$, and
2. $\sum_{j: i j \in E(H)}(2 p)^{w_{j}} \leq \frac{w_{i}}{2}$,
then

$$
\operatorname{Pr}\left(\bigcap_{i=1}^{N} \overline{A_{i}}\right)>0
$$

