Large subgraphs without short cycles

F. Foucaud, M. Krivelevich & G. Perarnau presented by Vojtěch Kaluža

May 12, 2016

Preliminary notation and definitions.

- The letters F, G, H and Γ always denote a simple undirected graph.
- We say that a graph G is F-free if there is no subgraph of G isomorphic to F.
- Turán graphs and Turán numbers Let \mathcal{F} be a class of graphs. We write $\operatorname{Ex}(G, \mathcal{F})$ for a largest subgraph of G that is F-free for every $F \in \mathcal{F}$. We denote by $\operatorname{ex}(G, \mathcal{F})$ the number of edges of $\operatorname{Ex}(G, \mathcal{F})$.
- $f(m, \mathcal{F}) = \min\{\exp(G, \mathcal{F}) \colon |E(G)| = m\}.$
- g(G) stands for the girth of G, $\delta(G)$ for its minimum degree and $\Delta(G)$ for its maximum degree.
- $d(G, \mathcal{F}) = \max\{\delta(H) \colon V(H) = V(G) \text{ and } H \text{ is } \mathcal{F}\text{-free subgraph of } G\}.$
- $h(\delta, \Delta, \mathcal{F}) = \min\{d(G, \mathcal{F}) \colon \delta(G) = \delta \text{ and } \Delta(G) = \Delta\}.$
- $\chi(F)$ denotes the chromatic number of F and $\chi(\mathcal{F}) = \min_{F \in \mathcal{F}} \chi(\mathcal{F})$.
- $\mathcal{F}_r = \{C_3, C_4, \dots, C_{2r}, C_{2r+1}\}$ and $\mathcal{F}_r^{\text{even}} = \{C_4, C_6, \dots, C_{2r}\}.$

Results.

Proposition 1: For every graph G and for every $k \ge 3$ there exists a (k-1)-partite subgraph H of G such that for every $v \in V(G)$,

$$d_H(v) \ge \left(1 - \frac{1}{k-1}\right) d_G(v) \; .$$

Moreover, for every \mathcal{F} with $\chi(\mathcal{F}) = k$, we have

$$f(m, \mathcal{F}) = \left(1 - \frac{1}{k-1}\right)m + o(m)$$

and

$$h(\delta, \Delta, \mathcal{F}) = \left(1 - \frac{1}{k-1}\right)\delta + o(\delta)$$

Theorem 2: For every $r \ge 2$ there exists c = c(r) > 0 such that for every $m \ge m_0$,

$$f(m,r) := f(m, \mathcal{F}_r^{even}) \ge \frac{c}{\log m} \min_{k|m} \exp(K_{k,m/k}, \mathcal{F}_r^{even}) .$$

Corollary 3: There exists a constant c > 0 such that for every $m \ge m_0$,

$$f(m,2) \ge \frac{cm^{2/3}}{\log m} \; .$$

Theorem 4: Let G be a graph with minimum degree δ and (large enough) maximum degree Δ such that $\exp(K_{\Delta}, \mathcal{F}_r)\delta \geq \alpha \Delta^2 \log^4 \Delta$ for some large constant $\alpha > 0$. Then, for every $r \geq 2$ there exists a spanning subgraph H of G with $g(H) \geq 2r + 2$ and $\delta(H) \geq \frac{c \cdot \exp(K_{\Delta}, \mathcal{F}_r)\delta}{\Delta^2 \log \Delta}$, for some small constant c > 0. In particular, under the above conditions on δ and Δ ,

$$h(\delta, \Delta, r) \ge h(\delta, \Delta, \mathcal{F}_r) \ge \frac{c \cdot \exp(K_{\Delta}, \mathcal{F}_r)\delta}{\Delta^2 \log \Delta}$$

Corollary 5: For every Δ and δ such that $ex(K_{\Delta}, \mathcal{F}_r)\delta \geq \alpha \Delta^2 \log^4 \Delta$ for some large constant $\alpha > 0$, we have

$$h(\delta, \Delta, r) \ge h(\delta, \Delta, \mathcal{F}_r) = \Omega\left(\frac{\delta}{\Delta^{1-\frac{2}{3r-2}}\log\Delta}\right)$$

Proofs.

Definition: For every graph G, every graph Γ with $V(\Gamma) = [\ell]$ and every vertex labeling $\chi : V(G) \to [\ell]$ we define the spanning subgraph $H'_{(\chi,\Gamma)} \subseteq G$ as the subgraph with vertex set V(G) where an edge e = uv is present if and only if $uv \in E(G)$ and $\chi(u)\chi(v) \in E(\Gamma)$.

Definition: For every graph G, every graph Γ with $V(\Gamma) = [\ell]$ and every vertex labeling $\chi : V(G) \to [\ell]$ we define the spanning subgraph $H^*_{(\chi,\Gamma)} \subseteq G$ as the subgraph with vertex set V(G) such that an edge e = uv is present in H^* if all the following properties are satisfied:

- 1. $uv \in E(G)$ and $\chi(u)\chi(v) \in E(\Gamma)$, that is $e \in E(H')$,
- 2. for every $w \neq v$, $w \in N_G(u)$, we have $\chi(w) \neq \chi(v)$, and
- 3. for every $w \neq u$, $w \in N_G(v)$, we have $\chi(w) \neq \chi(u)$.
- We say that a colouring $\chi: V(G) \to [l]$ is *t*-frugal if for every $v \in V(G)$ and every colour $c \in [l]$ we have $|N_G(v) \cap \chi^{-1}(c)| \leq t$; that is, v is a neighbour of at most t vertices of the same colour.
- A cycle in a coloured graph G is called *rainbow* if all its vertices have distinct colour.

A path in G is called *inner-rainbow* if its both endpoints have the same colour c and all other vertices of the path are coloured with distinct colours different from c.

Lemma 13: Let G be a graph with maximum degree Δ and minimum degree δ that admits a t-frugal coloring χ without rainbow cycles of length at most 2r + 1 and maximal inner-rainbow paths of length l for every $3 \leq l \leq 2r$. If $\delta > 129t^3 \log \Delta$ and Δ is large enough, then there exists a subgraph $H \subseteq G$ such that

1.
$$\forall v \in V(G), d_H(v) \geq \frac{d_G(v)}{4t}, and$$

2. $g(H) \geq 2r + 2.$

Probabilistic tools.

Lemma (Chernoff inequality for binomial distributions): Let $X \sim Bin(N,p)$ be a Binomial random variable. Then for all $0 < \varepsilon < 1$,

$$\Pr(X \le (1 - \varepsilon)Np) < \exp\left(-\frac{\varepsilon^2}{2}Np\right)$$

Lemma (Azuma inequality): Let $L: S^T \to \mathbb{R}$ be a functional such that for every g and g' differing in just one coordinate from the product space S^T , we have $|L(g) - L(g')| \leq 1$. Let |T| = l. Then for all $\lambda > 0$

1.
$$\Pr(L \le \mathbb{E}(L) - \lambda \sqrt{l}) < e^{-\frac{\lambda^2}{2}},$$

2. $\Pr(L \ge \mathbb{E}(L) + \lambda \sqrt{l}) < e^{-\frac{\lambda^2}{2}}.$

Lemma (Weighted Lovász Local Lemma): Let $\mathcal{A} = \{A_1, \ldots, A_N\}$ be a set of events and let H be a dependency graph for \mathcal{A} . If there exist weights $w_1, \ldots, w_N \ge 1$ and a real $p \le \frac{1}{4}$ such that for each $i \in [N]$:

1.
$$\Pr(A_i) \le p^{w_i}$$
, and
2. $\sum_{j: ij \in E(H)} (2p)^{w_j} \le \frac{w_i}{2}$

then

$$\Pr\left(\bigcap_{i=1}^N\overline{A_i}\right)>0$$