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In this paper we study relationship between parameterized algorithms and exact exponential
algorithms. We will prove that if we have a good parameterized algorithms for some problem Q
then we have also good exact exponential algorithms for Q.

Definition 1. An implicit set system is a function ® that takes a string I € {0,1}* as an input
and it outputs a set system (Uy, Fr) where Uy is a universe and F7 is a collection of subsets of U;.

We consider only polynomial computable implicit set systems, i.e., given I we can compute Uy
in polynomial time (in |I|) and given S C U; we can decide if S € F; in polynomial time. For an
implicit set system ® we define the following problem.

PROBLEM: ®&-EXTENSION
Input: An instance I € {0,1}*, aset X C Uy and k € N.
Question: Is there a subset S C Uy \ X such that SU X € F; and |S| < k.

By N = |I| we denote the size of the instance and by n = |U;| we denote the size of the
universe. The main result is summarized by the following theorem.

Theorem 2. If there exists an algorithm for ®-EXTENSION with running time ¢* N then there
exists an algorithm for ®-EXTENSION with running time (2 — %)”*O(")No(l).

We prove Theorem 2 in two steps. First, we give a randomized algorithm A such that it solves
®-EXTENSION for an instance (I, X, k) which runs in time (2—2)"~XIN©() and is always correct
on no-instances and is correct on yes-instances with a probability greater than % Then we discuss
a derandomization of the algorithm A at cost of a subexponential factor (2 — %)"(”).

Randomized Algorithm

Let B be a paremterized algorithm for ®-EXTENSION given by assumptions of Theorem 2. Let
(I, X, k) be an instance of ®-EXTENSION and k' < k. The main procedure P(k’) (which will be
repeated many times) of the exact algorithm A consists of two steps.

1. Choose an integer ¢t = t(c,n, k', |X]). Select a random subset Y C Uy \ X of size t.
2. Run algorithm B on the instance (I, X UY, k' — t) and return the answer.

Let k(m,p,q) = (ZL)/(Z) for 0 < ¢ < p < m. For each k' < k, the algorithm A repeat the
procedure P(k') x(n — | X|, k', t)-times and returns yes if some run of P returned yes. By the
choice of the repetition number we get the correct bound for the probability of success. The
parameter ¢t determines a trade-off when is cheaper to add random vertices to the solution and
repeat the subroutine P and when is cheaper to compute the solution exactly by the algorithms
B. By the right choice of ¢t we can put down the running time below the required bound.

Lemma 3. Let ¢ > 1 be a constant and m € N. Then,

1\m
max min k(m,p,q)cP"9 < (2 — f) mCPW),
0<p<m 0<q<p c

Corollary 4. The running time of the algorithm A is bounded by (2 — %)”*|X‘No(1).



Derandomization

For the derandomization of the algorithm A we need to enumerate all subsets Y of Uy \ X of size
t such that for every subset S C Uy \ X of size k' there exists at least one Y such that Y C S.

Definition 5. Let U be a universe of size m and let 0 < ¢ < p < m. A family C C (g) is an
(m, p, q)-inclusion family if for every S € (g) there is a set Y € C such that Y C S.

Theorem 6. There is an algorithm that given m,p and q outputs an (m,p, q)-inclusion family C
of size k(m, p,q)2°"™) in time k(m,p,q) 2°0™).

Instead of k(n — | X|, k', t) repetitions of P(k’) the algorithm A loops over all Y € C. Thus,
the running time of the algorithm A is bounded by (2 — )+e(m) NyO1),

The algorithm from Theorem 6 is constructed in two steps. First, we give an inefficient algo-
rithm for the inclusion family of a small size using an approximation algorithm for SET COVER.
Then, we decrease the size of the universe using hash functions and decrease the time of the
construction of (m, p, ¢)-inclusion family.

PROBLEM: SeET COVER
Input: A universe V, a collection 7 of subsets of V.
Output: Minimum sized sub-collection 7" C 7" which covers V, i.e., Upcr T = V.

Theorem 7. There is an O(log |V|)-factor approzimation algorithm for SET COVER which runs
in time O(|V| + > per IT]).

Definition 8. Let U be a set and b € N. Let H be a collection of hash functions U — [b]. The
collection H is pair-wise independent if for every i,j € [b] and every distinct u,v € U holds that

Pr[f(u) =i, f(v) = j] = 5.

fex b2

Theorem 9. There is a polynomial time algorithm that given a universe U and a prime b con-
structs a pair-wise independent collection H of hash functions U — [b] such that |H| = b2.



