
Exact Algorithms via Monotone Local Search

Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, Saket Saurabh

In this paper we study relationship between parameterized algorithms and exact exponential
algorithms. We will prove that if we have a good parameterized algorithms for some problem Q
then we have also good exact exponential algorithms for Q.

Definition 1. An implicit set system is a function Φ that takes a string I ∈ {0, 1}∗ as an input
and it outputs a set system (UI ,FI) where UI is a universe and FI is a collection of subsets of UI .

We consider only polynomial computable implicit set systems, i.e., given I we can compute UI

in polynomial time (in |I|) and given S ⊆ UI we can decide if S ∈ FI in polynomial time. For an
implicit set system Φ we define the following problem.

PROBLEM: Φ-Extension
Input: An instance I ∈ {0, 1}∗, a set X ⊆ UI and k ∈ N.
Question: Is there a subset S ⊆ UI \X such that S ∪X ∈ FI and |S| ≤ k.

By N = |I| we denote the size of the instance and by n = |UI | we denote the size of the
universe. The main result is summarized by the following theorem.

Theorem 2. If there exists an algorithm for Φ-Extension with running time ckNO(1) then there
exists an algorithm for Φ-Extension with running time (2− 1

c)
n+o(n)NO(1).

We prove Theorem 2 in two steps. First, we give a randomized algorithm A such that it solves
Φ-Extension for an instance (I,X, k) which runs in time (2− 1

c)
n−|X|NO(1) and is always correct

on no-instances and is correct on yes-instances with a probability greater than 1
2 . Then we discuss

a derandomization of the algorithm A at cost of a subexponential factor (2− 1
c)

o(n).

Randomized Algorithm

Let B be a paremterized algorithm for Φ-Extension given by assumptions of Theorem 2. Let
(I,X, k) be an instance of Φ-Extension and k′ ≤ k. The main procedure P(k′) (which will be
repeated many times) of the exact algorithm A consists of two steps.

1. Choose an integer t = t(c, n, k′, |X|). Select a random subset Y ⊆ UI \X of size t.

2. Run algorithm B on the instance (I,X ∪ Y, k′ − t) and return the answer.

Let κ(m, p, q) =
(
m
q

)
/
(
p
q

)
for 0 ≤ q ≤ p ≤ m. For each k′ ≤ k, the algorithm A repeat the

procedure P(k′) κ(n − |X|, k′, t)-times and returns yes if some run of P returned yes. By the
choice of the repetition number we get the correct bound for the probability of success. The
parameter t determines a trade-off when is cheaper to add random vertices to the solution and
repeat the subroutine P and when is cheaper to compute the solution exactly by the algorithms
B. By the right choice of t we can put down the running time below the required bound.

Lemma 3. Let c ≥ 1 be a constant and m ∈ N. Then,

max
0≤p≤m

min
0≤q≤p

κ(m, p, q)cp−q ≤
(
2− 1

c

)m

mO(1).

Corollary 4. The running time of the algorithm A is bounded by (2− 1
c)

n−|X|NO(1).

1

Derandomization

For the derandomization of the algorithm A we need to enumerate all subsets Y of UI \X of size
t such that for every subset S ⊆ UI \X of size k′ there exists at least one Y such that Y ⊆ S.

Definition 5. Let U be a universe of size m and let 0 ≤ q ≤ p ≤ m. A family C ⊆
(
U
q

)
is an

(m, p, q)-inclusion family if for every S ∈
(
U
p

)
there is a set Y ∈ C such that Y ⊆ S.

Theorem 6. There is an algorithm that given m, p and q outputs an (m, p, q)-inclusion family C
of size κ(m, p, q)2o(m) in time κ(m, p, q) 2o(m).

Instead of κ(n − |X|, k′, t) repetitions of P(k′) the algorithm A loops over all Y ∈ C. Thus,
the running time of the algorithm A is bounded by (2− 1

c)
n+o(n)NO(1).

The algorithm from Theorem 6 is constructed in two steps. First, we give an inefficient algo-
rithm for the inclusion family of a small size using an approximation algorithm for Set Cover.
Then, we decrease the size of the universe using hash functions and decrease the time of the
construction of (m, p, q)-inclusion family.

PROBLEM: Set Cover
Input: A universe V, a collection T of subsets of V.
Output: Minimum sized sub-collection T ′ ⊆ T which covers V, i.e.,

∪
T∈T ′ T = V.

Theorem 7. There is an O(log |V|)-factor approximation algorithm for Set Cover which runs
in time O(|V|+

∑
T∈T |T |).

Definition 8. Let U be a set and b ∈ N. Let H be a collection of hash functions U → [b]. The
collection H is pair-wise independent if for every i, j ∈ [b] and every distinct u, v ∈ U holds that

Pr
f∈X

[f(u) = i, f(v) = j] =
1

b2
.

Theorem 9. There is a polynomial time algorithm that given a universe U and a prime b con-
structs a pair-wise independent collection H of hash functions U → [b] such that |H| = b2.

2

