Corruption Detection on Networks

Noga Alon, Elchanan Mossel and Robin Pemantle

presented by Radek Hušek

Definition 1 (δ -good expander). Let $\delta < 1/8$. Graph G = (V, E) on n vertices is δ -good expander if following holds:

- $\forall U \subset V \text{ such that } |U| \leq 2\delta n \text{ holds } |N(U) \setminus U| > |U|$
- $\forall A, B \subset V$ such that $|A| \ge \delta n$ and $|B| \ge n/4$ there exists an edge between A and B.

Standard results imply that random *d*-regular graph are δ -good expanders with high probability (where *d* depends on δ).

Definition 2 (Directed δ -good expander). Let $\delta < 1/16$. Digraph G = (V, E) on n vertices is δ -good directed expander if following holds:

- $\forall U \subset V \text{ such that } |U| \leq 4\delta n \text{ holds } |N^+(U) \setminus U| > |U|$
- ∀A, B ⊂ V such that |A| ≥ δn and |B| ≥ n/4 there exist both an edge from A to B and an edge from B to A.

Main results

Theorem 3 (Tractability for expanders). Let $G = (T \cup B, E)$ be a δ -good expander and suppose |T| > |B|. Then when getting reports of each vertex of G about all its neighbors we can identify a subset $T' \subseteq T$ and a subset $B' \subseteq B$ so that $|T' \cup B'| \ge (1 - \delta)n$.

Moreover, if $|T| > (1/2 + \delta)n$ then T' and B' can be computed from given reports in a linear time.

Theorem 4 (NP-hardness). For any $\delta > 0$ there exists a $\gamma > 0$ such that following promise problem is NP-hard. The input is a δ -good expander G = (V, E) on n vertices and all the reports of vertices about their neighbors. The promise is that either

- there exists partition of $V = T \cup B$ which is consistent with all the reports and $|T| \ge n/2 + \gamma n$, or
- all partitions $V = T \cup B$ which are consistent with reports satisfy $|T| \leq n/2 \gamma n$.

The objective is to distinguish between the two options above.

Theorem 5 (Non-tractability for graphs with small separators). Let G = (V, E) be a graph on n vertices such that it is possible to remove at most εn vertices and get a graph in which any connected component is of size at most εn . Then even knowing that $|T| \ge (1 - 2\varepsilon)n$ there is no deterministic algorithm that identifies even single member of T given all the reports. In particular, this is the case for planar graphs and more generally graphs with fixed excluded minors even if $\varepsilon = \Theta(1/\sqrt[3]{n})$.

Directed version

Lemma 6 (Existence of δ -good directed expanders). There are absolute positive constants c_1 , c_2 so that for any fixed positive $\delta < 1/16$ there is a constant $d < c_1/\delta$ and infinitely many values of n for which there is a δ -good directed expander on n vertices in which total degree of each vertex is d and there is no cycle shorter than $c_2 \log n/\log d$ (of any orientation).

Theorem 7 (Tractability for directed expanders). Let $G = (T \cup B, E)$ be a δ -good directed expander and suppose |T| > |B|. Then when getting reports of each vertex of G about all its out-neighbors we can identify a subset $T' \subseteq T$ and a subset $B' \subseteq B$ so that $|T' \cup B'| \ge (1 - \delta)n$.

Moreover, if $|T| > (1/2 + 2\delta)n$ then T' and B' can be computed from given reports in a linear time.