Comparable pairs in families of sets

Noga Alon, Shagnik Das, Roman Glebov, Benny Sudakov

Definitions and results

Let $A, B \subset[n]=\{1,2, \ldots, n\}$ be two different sets. We say that sets A, B are comparable if either $A \subset B$ or $B \subset A$. Let \mathcal{F} be a family od subsets of [n], i.e. $\mathcal{F} \subseteq$ $2^{[n]}$. Denote by $c(\mathcal{F})$ the number of comparable pairs in \mathcal{F} and define $c(n, m)$ to be the maximum number of comparable pairs over all families of m subsets of $[n]$.

Clearly $c(n, m) \leq\binom{ m}{2}$ and equality holds only for $m \leq n+1$. Again, little counting shows $c\left(n, 2^{n}\right)=3^{n}-2^{n} \sim 2^{1.58 n}$.

Daykin and Frankl showed that there are "large" families where almost all pairs are comparable. More precisely, they proved that $c(n, m)=(1-o(1))\binom{m}{2}$ if and only if $m=2^{o(n)}$. Their lower bound comes from the construction called the tower of cubes, which generalizes linearly ordered sets. A subcube of a hypercube $2^{[n]}$ is, for some sets $F_{1} \subset F_{2}$, a family of sets $\mathcal{F}=\left\{F \subset[n]: F_{1} \subseteq F \subseteq F_{2}\right\}$. We call the number $\left|F_{2}\right|-\left|F_{1}\right|$ the dimension of \mathcal{F}. For simplicity suppose that $k \mid n$ and $l=n / k$. Let $X_{i}=[i l]$ for $i \in[k]$, and consider family

$$
\mathcal{F}_{i}=\left\{F \subset[n]: X_{i-1} \subseteq F \subseteq X_{i}\right\} \quad \text { and } \quad \mathcal{F}=\cup_{i=1}^{k} \mathcal{F}_{i} .
$$

Then $|\mathcal{F}|=k 2^{n / k}-k+1$; moreover, any two sets from different subcubes are comparable, hence $c(\mathcal{F}) \geq(1-1 / k)\binom{m}{2}$. When $k=\omega(1)$, then $c(\mathcal{F})=(1-o(1))\binom{m}{2}$ as in the theorem of Daykin and Frankl.

Alon and Frankl proved that the towers of cubes are asymptotically optimal even when k is constant.
Theorem 1 For every positive integer k there exists a positive $\beta=\beta(k)$ such that if $m=2^{(1 /(k+1)+\delta) n}$ for $\delta>0$, then

$$
c(n, m)<\left(1-\frac{1}{k}\right)\binom{m}{2}+O\left(m^{2-\beta \delta^{k+1}}\right) .
$$

Case $k=1$ is of particular interest. Alon and Frankl proved that a family \mathcal{F} of size $m=2^{(1 / 2+\delta) n}$ must have $c(n, m)<4 m^{2-\delta^{2} / 2}=o\left(m^{2}\right)$, thus proving a conjecture of Daykin and Erdős. Erdős made a finer conjecture, asking whether $m=\omega\left(2^{n / 2}\right)$ implies $c(n, m)=o\left(m^{2}\right)$. Alon and Frankl disproved this conjecture, exhibiting for any $d \geq 1$ a family \mathcal{F} of size $\Omega\left(n^{d} 2^{n / 2}\right)$ with $c(\mathcal{F}) \geq 2^{-2 d-1}\binom{m}{2}$, and they conjectured that this construction is essentially the best possible.
Conjecture 1 If $m=n^{\omega(1)} 2^{n / 2}$ then $c(n, m)=o\left(m^{2}\right)$.

Proving a conjecture of Alon and Frankl

We prove a slightly more general result. Let \mathcal{A} and \mathcal{B} be two families of subsets of $[n]$, we write $c(\mathcal{A}, \mathcal{B})$ for the number of pairs $(A, B) \in \mathcal{A} \times \mathcal{B}$ with $A \subset B$.
Theorem 2 Let \mathcal{A} and \mathcal{B} be two set families over $[n]$ with $|\mathcal{A}||\mathcal{B}|=n^{d} 2^{n}$. Then $c(\mathcal{A}, \mathcal{B}) \leq$ $2^{-d / 300}|\mathcal{A}||\mathcal{B}|$.

For the proof we need following lemmata.
Lemma 1 For $n \geq 2$ and $d \in(0,1]$, let \mathcal{A} and \mathcal{B} be two families of subsets of $[n]$ satisfying $c(\mathcal{A}, \mathcal{B}) \geq 2^{-d / 300}|\mathcal{A}||\mathcal{B}|$. Then $|\mathcal{A}||\mathcal{B}|<n^{d} 2^{n}$.
Lemma 2 For $p, q \in[0,1]$ and $0<\alpha<1 / 300$ we have

$$
(p(1-q))^{1-\alpha}+(p q)^{1-\alpha}+((1-p) q)^{1-\alpha} \leq\left(2+2^{1-\frac{1}{300 \alpha}}\right)^{\alpha} .
$$

Lemma 3 Let \mathcal{F} be a family of subsets of $[n]$ and let p_{i} denote the fraction of sets in \mathcal{F} that contain i. Then

$$
|\mathcal{F}| \leq 2^{\sum_{i=1}^{n} H\left(p_{i}\right)}
$$

where $H(p)=-p \log p-(1-p) \log (1-p)$ is the binary entropy.

Dense families

Here we describe the nature of large families \mathcal{F} maximizing $c(\mathcal{F})$. Since the sets \emptyset and $[n]$ are contained in all possible comparable pairs, one can guess that families \mathcal{F} maximizing $c(\mathcal{F})$ are concentrated close to the sets \emptyset and $[n]$. We show that it is the case for $|\mathcal{F}| \geq 2^{0.92 n}$.

Let $0 \leq k \leq n / 2$, we define

$$
\begin{aligned}
\mathcal{H}_{k} & =\{F \subset[n]:|F| \leq k\} \cup\{F \subset[n]:|F| \geq n-k\}, \\
M_{k} & =\left|\mathcal{H}_{k}\right|=2 \sum_{i=0}^{k}\binom{n}{i}
\end{aligned}
$$

Theorem 3 If $M_{k-1} \leq m \leq M_{k}$ for some k with $n / 3+\sqrt{2 n \ln 2} \leq k \leq n / 2$, then every family \mathcal{F} of m sets over $[n]$ maximising the number of comparable pairs satisfies $\mathcal{H}_{k-1} \subseteq \mathcal{F} \subseteq \mathcal{H}_{k}$.

The entropy bound $2^{0.92 n}$ comes from the estimate $\sum_{i \leq p n}\binom{n}{i} \leq 2^{H(p) n}$. The proof is based on switching sets between \mathcal{F} and $2^{[n]} \backslash \mathcal{F}$.
Lemma 4 If $\lambda \geq 0$ and $\mathcal{A}=\{A \subseteq[r]:|A| \geq r / 2+\lambda \sqrt{r}\}$, then $|\mathcal{A}| \leq e^{-2 \lambda^{2}} 2^{r}$.
Lemma 5 Given integers n an s satisfying $n / 3<s \leq n / 2$, the quantity

$$
2^{n-t}+\sum_{j=0}^{s}\binom{t}{j}
$$

is minimised over $n-s \leq t \leq n$ when $t=n-s$.
The above theorem is enough to determine $c(n, m)$ asymptotically, but we wish to determine the exact value of $c(n, m)$. That can be done for small values of $m^{\prime}=m-M_{k-1}$ by following proposition, but remains open for arbitrary m^{\prime}. However, the exact result has some subtle complexities, since it contains as a special case the famous Kruskal-Katona Theorem.
Proposition 1 Suppose $n / 3+\sqrt{2 n \ln 2} \leq k \leq n / 2$ and $m^{\prime}=m-M_{k-1} \leq 2\binom{n / 2}{k}$. Then $c(n, m)=c\left(\mathcal{H}_{k-1} \cup \mathcal{A} \cup \mathcal{B}\right)$, where \mathcal{A} is a set of $\left\lfloor m^{\prime} / 2\right\rfloor k$-subsets of $[n / 2]$ and \mathcal{B} is a set of $\left\lceil m^{\prime} / 2\right\rceil(n-k)$-sets containing $[n / 2]$.

