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Definitions and results

Let A,B ⊂ [n] = {1, 2, . . . , n} be two different sets. We say that sets A, B are
comparable if either A ⊂ B or B ⊂ A. Let F be a family od subsets of [n], i.e. F ⊆
2[n]. Denote by c(F) the number of comparable pairs in F and define c(n,m) to be the
maximum number of comparable pairs over all families of m subsets of [n].

Clearly c(n,m) ≤
(
m
2

)
and equality holds only for m ≤ n + 1. Again, little counting

shows c(n, 2n) = 3n − 2n ∼ 21.58n.
Daykin and Frankl showed that there are ”large” families where almost all pairs are

comparable. More precisely, they proved that c(n,m) = (1 − o(1))
(
m
2

)
if and only if

m = 2o(n). Their lower bound comes from the construction called the tower of cubes,
which generalizes linearly ordered sets. A subcube of a hypercube 2[n] is, for some sets
F1 ⊂ F2, a family of sets F = {F ⊂ [n] : F1 ⊆ F ⊆ F2}. We call the number |F2| − |F1|
the dimension of F . For simplicity suppose that k | n and l = n/k. Let Xi = [il] for
i ∈ [k], and consider family

Fi = {F ⊂ [n] : Xi−1 ⊆ F ⊆ Xi} and F = ∪ki=1Fi.

Then |F| = k2n/k−k+1; moreover, any two sets from different subcubes are comparable,
hence c(F) ≥ (1−1/k)

(
m
2

)
. When k = ω(1), then c(F) = (1−o(1))

(
m
2

)
as in the theorem

of Daykin and Frankl.
Alon and Frankl proved that the towers of cubes are asymptotically optimal even when

k is constant.

Theorem 1 For every positive integer k there exists a positive β = β(k) such that if
m = 2(1/(k+1)+δ)n for δ > 0, then

c(n,m) <

(
1− 1

k

)(
m

2

)
+O

(
m2−βδk+1

)
.

Case k = 1 is of particular interest. Alon and Frankl proved that a family F of
size m = 2(1/2+δ)n must have c(n,m) < 4m2−δ2/2 = o(m2), thus proving a conjecture of
Daykin and Erdős. Erdős made a finer conjecture, asking whether m = ω(2n/2) implies
c(n,m) = o(m2). Alon and Frankl disproved this conjecture, exhibiting for any d ≥ 1
a family F of size Ω(nd2n/2) with c(F) ≥ 2−2d−1

(
m
2

)
, and they conjectured that this

construction is essentially the best possible.

Conjecture 1 If m = nω(1)2n/2 then c(n,m) = o(m2).

Proving a conjecture of Alon and Frankl

We prove a slightly more general result. Let A and B be two families of subsets of [n],
we write c(A,B) for the number of pairs (A,B) ∈ A× B with A ⊂ B.

Theorem 2 LetA and B be two set families over [n] with |A||B| = nd2n. Then c(A,B) ≤
2−d/300|A||B|.



For the proof we need following lemmata.

Lemma 1 For n ≥ 2 and d ∈ (0, 1], let A and B be two families of subsets of [n]
satisfying c(A,B) ≥ 2−d/300|A||B|. Then |A||B| < nd2n.

Lemma 2 For p, q ∈ [0, 1] and 0 < α < 1/300 we have

(p(1− q))1−α + (pq)1−α + ((1− p)q)1−α ≤
(

2 + 21− 1
300α

)α
.

Lemma 3 Let F be a family of subsets of [n] and let pi denote the fraction of sets in F
that contain i. Then

|F| ≤ 2
∑n
i=1H(pi),

where H(p) = −p log p− (1− p) log(1− p) is the binary entropy.

Dense families

Here we describe the nature of large families F maximizing c(F). Since the sets ∅
and [n] are contained in all possible comparable pairs, one can guess that families F
maximizing c(F) are concentrated close to the sets ∅ and [n]. We show that it is the case
for |F| ≥ 20.92n.

Let 0 ≤ k ≤ n/2, we define

Hk = {F ⊂ [n] : |F | ≤ k} ∪ {F ⊂ [n] : |F | ≥ n− k},

Mk = |Hk| = 2
k∑
i=0

(
n

i

)
.

Theorem 3 If Mk−1 ≤ m ≤ Mk for some k with n/3 +
√

2n ln 2 ≤ k ≤ n/2, then
every family F of m sets over [n] maximising the number of comparable pairs satisfies
Hk−1 ⊆ F ⊆ Hk.

The entropy bound 20.92n comes from the estimate
∑

i≤pn
(
n
i

)
≤ 2H(p)n. The proof is

based on switching sets between F and 2[n] \ F .

Lemma 4 If λ ≥ 0 and A = {A ⊆ [r] : |A| ≥ r/2 + λ
√
r}, then |A| ≤ e−2λ

2
2r.

Lemma 5 Given integers n an s satisfying n/3 < s ≤ n/2, the quantity

2n−t +
s∑
j=0

(
t

j

)
is minimised over n− s ≤ t ≤ n when t = n− s.

The above theorem is enough to determine c(n,m) asymptotically, but we wish to
determine the exact value of c(n,m). That can be done for small values of m′ = m−Mk−1
by following proposition, but remains open for arbitrary m′. However, the exact result has
some subtle complexities, since it contains as a special case the famous Kruskal-Katona
Theorem.

Proposition 1 Suppose n/3 +
√

2n ln 2 ≤ k ≤ n/2 and m′ = m−Mk−1 ≤ 2
(
n/2
k

)
. Then

c(n,m) = c(Hk−1 ∪ A ∪ B), where A is a set of bm′/2c k-subsets of [n/2] and B is a set
of dm′/2e (n− k)-sets containing [n/2].


