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The authors extend the definition of quadrangulation to higher dimensions and prove that every non-
bipartite graph G which embeds as a quadrangulation in the n-dimensional real projective space Pn has
chromatic number at least n+ 2.

Preliminaries:

• A graph that embeds in the real projective plane P 2 so that every face is bounded by a walk of length
4 is called a projective quadrangulation.

• In 1996, Youngs showed that the chromatic number of a projective quadrangulation is either 2 or 4.

• A topological space K (a subspace of some Euclidean space RN ) is a generalized simplicial complex
if K can be constructed using the following ‘gluing process’. We start with discrete point space K(0)

in RN and at each step i > 0 we inductively construct the space K(i) by attaching a set of i-dimensional
simplices to K(i−1). The images of the simplices involved in the construction are the faces of K. Each
simplex is attached via a gluing map f : ∂∆i → K(i−1) that maps the interior of each face of the
boundary of the standard i-simplex ∆i in Ri homeomorphically to the interior of a face of K(i−1) of
the same dimension. The polyhedron ‖K‖ of K is the union of all faces of K.

• A quadrangulation of a generalized simplicial complex K is a spanning subgraph G of K(1) such that
(inclusion-wise) maximal simplex of K induces a complete bipartite subgraph of G with at least one
edge. If ‖K‖ is homeomorphic to a topological space X, we say that the natural embedding of G in X
is a quadrangulation of X.

• We say that K triangulates the space ‖K‖ or any space homeomorphic to it.

Main results:

• The authors generalize the lower bound of Youngs.

Theorem 1. If G is a non-bipartite quadrangulation of Pn, then χ(G) ≥ n+ 2.

• The authors show that the family of quadrangulations of projective spaces include all complete graphs
and all (generalized) Mycielski graphs. In particular, the chromatic number of quadrangulations of Pn

cannot be bounded from above for any n > 2.

Theorem 2. For n ≥ 3 and t ≥ 5, the complete graph Kt embeds in Pn as a quadrangulation if t− n
is even.

• For positive integers n and k, the Kneser graph KG(n, k) is a graph with the vertex set
(
[n]
k

)
and with

edges {A,B} where A,B ∈
(
[n]
k

)
and A ∩B = ∅.

• We let
(
[n]
k

)
stab

be the set of independent subsets of size k in the cycle Cn with the vertex set [n].

The Schrijver graph SG(n, k) is a graph with the vertex set
(
[n]
k

)
stab

and with edges {A,B} where

A,B ∈
(
[n]
k

)
stab

and A ∩B = ∅.

Theorem 3. Let n > 2k and k ≥ 1. There exists a non-bipartite quadrangulation of Pn−2k that is
homomorphic to SG(n, k).

• Since SG(n, k) is a subgraph of the Kneser graph KG(n, k), Theorems 1 and 2 give an alternative proof
of the Lovász–Kneser theorem, namely χ(KG(n, k)) ≥ n− 2k + 2.



Proof of Theorem 1:

• Let K be a generalized simplicial complex and p a non-negative integer. Restricting to Z2 coefficients, a p-
chain of K is a finite formal sum of some of the p-simplices of K and the group of p-chains of K is denoted
by Cp(K,Z2). The boundary of a p-chain c is denoted by ∂p(c), where ∂p : Cp(K,Z2)→ Cp−1(K,Z2) is
the boundary operator. The group of p-cycles of Cp(K,Z2) is defined as Zp(K,Z2) := Ker∂p and the
group of p-boundaries of Cp(K,Z2) as Bp(K,Z2) := Im∂p+1. The pth homology group Hp(K,Z2) is the
quotient Zp(K,Z2)/Bp(K,Z2).

• Two p-cycles c1, c2 ∈ Zp(K,Z2) are homologous if there exists a (p+1)-chain d such that c1+c2 = ∂p+1(d).

Lemma 4. In every quadrangulation G of a topological space X, homologous cycles have the same
parity; in particular, 0-homologous cycles are even. If X = Pn and G is not bipartite, then every
1-homologous cycle is odd.

• A generalized simplicial complex K is a symmetric triangulation of K if −σ ∈ K for every face σ ∈ K.

• A 2-colouring c of K is an arbitrary assignment of two colours to the vertices of K. We say that c is
proper if there is no monochromatic maximal simplex. The graph associated to c is a spanning subgraph
of K(1) consisting of all edges with vertices colored by distinct colors in c.

Lemma 5. For a graph G, the following statements are equivalent.

(a) The graph G is a non-bipartite quadrangulation of Pn.

(b) There is a symmetric triangulation T of Sn such that no simplex of T contains antipodal vertices
and there is a proper antisymmetric 2-colouring of T such that G is obtained from the associated
graph by identifying all pairs of antipodal vertices.

• For a topological space X, a homeomorphism ξ : X → X is called a Z2-action on X if ξ2 = ξ ◦ ξ = idX .
A Z2-action is free if it has no fixed points. A topological space X equipped with a (free) Z2-action is a
(free) Z2-space.

• Given Z2-spaces (X, ξ) and (Y, ω), a continuous map f : X → Y such that f ◦ ξ = ω ◦ f is a Z2-map. If

there exists a Z2-map from X to Y , we write X
Z2−→ Y . The Z2-coindex of X is defined as

coind(X) := max{n ≥ 0: Sn Z2−→ X}.

• Given a graph G, the set of common neighbours of a set A ⊆ V (G) is defined as

CN(A) := {v ∈ V (G) : {a, v} ∈ E(G) for all a ∈ A}.

The box complex of a graph G without isolated vertices is the simplicial complex with vertex set
V (G)× {1, 2}, defined as

B(G) := {A1 ]A2 : A1, A2 ⊆ V (G), A1 ⊆ CN(A2) 6= ∅, A2 ⊆ CN(A1) 6= ∅},

where we use the notation A ]B for the set (A× {1}) ∪ (B × {2}).
The box complex is equipped with a natural free Z2-action ω which interchanges the two copies of
V (G), namely ω : (v, 1) 7→ (v, 2) and ω : (v, 2) 7→ (v, 1).

Theorem 6 (Lovász, 1978). If G is a graph with no isolated vertices, then χ(G) ≥ coind(B(G)) + 2.


