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The authors extend the definition of quadrangulation to higher dimensions and prove that every non-
bipartite graph G which embeds as a quadrangulation in the n-dimensional real projective space P" has
chromatic number at least n + 2.

Preliminaries:

e A graph that embeds in the real projective plane P? so that every face is bounded by a walk of length
4 is called a projective quadrangulation.

e In 1996, Youngs showed that the chromatic number of a projective quadrangulation is either 2 or 4.

e A topological space K (a subspace of some Euclidean space RY) is a generalized simplicial complex
if K can be constructed using the following ‘gluing process’. We start with discrete point space K(©)
in RY and at each step ¢ > 0 we inductively construct the space K by attaching a set of i-dimensional
simplices to K=Y, The images of the simplices involved in the construction are the faces of K. Each
simplex is attached via a gluing map f: 9A; — K(@~1 that maps the interior of each face of the
boundary of the standard i-simplex A, in R? homeomorphically to the interior of a face of K(~1 of
the same dimension. The polyhedron ||K|| of K is the union of all faces of K.

e A quadrangulation of a generalized simplicial complex K is a spanning subgraph G of K1) such that
(inclusion-wise) maximal simplex of K induces a complete bipartite subgraph of G with at least one
edge. If || K|| is homeomorphic to a topological space X, we say that the natural embedding of G in X
is a quadrangulation of X.

o We say that K triangulates the space | K|| or any space homeomorphic to it.

Main results:
e The authors generalize the lower bound of Youngs.

Theorem 1. If G is a non-bipartite quadrangulation of P™, then x(G) > n + 2.

e The authors show that the family of quadrangulations of projective spaces include all complete graphs
and all (generalized) Mycielski graphs. In particular, the chromatic number of quadrangulations of P
cannot be bounded from above for any n > 2.

Theorem 2. Forn > 3 and t > 5, the complete graph K; embeds in P" as a quadrangulation if t — n
18 even.

e For positive integers n and k, the Kneser graph KG(n, k) is a graph with the vertex set ([Z]) and with
edges {A, B} where A, B € ([Z]) and AN B = (.

o We let ([Z])stab be the set of independent subsets of size k in the cycle C,, with the vertex set [n].
The Schrijver graph SG(n,k) is a graph with the vertex set ([Z])stab and with edges {A, B} where
ABe (W) and ANB=0.

stab

Theorem 3. Let n > 2k and k > 1. There exists a non-bipartite quadrangulation of P"~2* that is
homomorphic to SG(n, k).

e Since SG(n, k) is a subgraph of the Kneser graph K G(n, k), Theorems [1| and [2] give an alternative proof
of the Lovdsz—Kneser theorem, namely x(KG(n,k)) > n — 2k + 2.



Proof of Theorem [1}

e Let K be a generalized simplicial complex and p a non-negative integer. Restricting to Zs coefficients, a p-
chain of K is a finite formal sum of some of the p-simplices of K and the group of p-chains of K is denoted
by Cp(K,Zs). The boundary of a p-chain c is denoted by 9,(c), where 9),: Cp(K,Zs) — Cp—1(K, Zs) is
the boundary operator. The group of p-cycles of Cp(K,Zs) is defined as Z,(K,Z2) := Kerd, and the
group of p-boundaries of C, (K, Z2) as By(K,Zs) := Im0Op41. The pth homology group Hy(K,Zs) is the
quotient Z,(K,Z2)/By(K, Z2).

o Two p-cycles 1, ¢o € Z,(K,Z2) are homologous if there exists a (p+1)-chain d such that ¢1+co2 = 0p41(d).

Lemma 4. In every quadrangulation G of a topological space X, homologous cycles have the same
parity; in particular, 0-homologous cycles are even. If X = P™ and G is not bipartite, then every
1-homologous cycle is odd.

e A generalized simplicial complex K is a symmetric triangulation of K if —o € K for every face o € K.

e A 2-colouring c of K is an arbitrary assignment of two colours to the vertices of K. We say that c is
proper if there is no monochromatic maximal simplex. The graph associated to c is a spanning subgraph
of KW consisting of all edges with vertices colored by distinct colors in c.

Lemma 5. For a graph G, the following statements are equivalent.

(a) The graph G is a non-bipartite quadrangulation of P™.

(b) There is a symmetric triangulation T of S™ such that no simplex of T contains antipodal vertices
and there is a proper antisymmetric 2-colouring of T such that G is obtained from the associated
graph by identifying all pairs of antipodal vertices.

o For a topological space X, a homeomorphism £: X — X is called a Zy-action on X if £2 = £ o€ = idx.
A Zo-action is free if it has no fixed points. A topological space X equipped with a (free) Zo-action is a
(free) Zo-space.

e Given Zo-spaces (X, &) and (Y,w), a continuous map f: X — Y such that fof =wo f is a Zs-map. If
there exists a Zs-map from X to Y, we write X 22, Y. The Zo-coindex of X is defined as

coind(X) := max{n > 0: S” 2% X}.

e Given a graph G, the set of common neighbours of a set A C V(G) is defined as
CN(A) :=={v e V(GQ): {a,v} € E(G) for all a € A}.
The box complex of a graph G without isolated vertices is the simplicial complex with vertex set
V(G) x {1,2}, defined as
B(G):={A1WAy: A, A> CV(G),A;] CCN(A) # 0, Ay C CN(4,) # 0},

where we use the notation AW B for the set (4 x {1}) U (B x {2}).

The box complex is equipped with a natural free Zs-action w which interchanges the two copies of
V(G), namely w: (v,1) — (v,2) and w: (v,2) — (v, 1).

Theorem 6 (Lovész, 1978). If G is a graph with no isolated vertices, then x(G) > coind(B(G)) + 2.



