Colouring quadrangulations of projective spaces

by Matěj Stehlík and Tomáš Kaiser

presented by Martin Balko

The authors extend the definition of quadrangulation to higher dimensions and prove that every nonbipartite graph G which embeds as a quadrangulation in the *n*-dimensional real projective space P^n has chromatic number at least n + 2.

Preliminaries:

- A graph that embeds in the real projective plane P^2 so that every face is bounded by a walk of length 4 is called a *projective quadrangulation*.
- In 1996, Youngs showed that the chromatic number of a projective quadrangulation is either 2 or 4.
- A topological space K (a subspace of some Euclidean space ℝ^N) is a generalized simplicial complex if K can be constructed using the following 'gluing process'. We start with discrete point space K⁽⁰⁾ in ℝ^N and at each step i > 0 we inductively construct the space K⁽ⁱ⁾ by attaching a set of i-dimensional simplices to K⁽ⁱ⁻¹⁾. The images of the simplices involved in the construction are the faces of K. Each simplex is attached via a gluing map f: ∂Δ_i → K⁽ⁱ⁻¹⁾ that maps the interior of each face of the boundary of the standard i-simplex Δ_i in ℝⁱ homeomorphically to the interior of a face of K⁽ⁱ⁻¹⁾ of the same dimension. The polyhedron ||K|| of K is the union of all faces of K.
- A quadrangulation of a generalized simplicial complex K is a spanning subgraph G of $K^{(1)}$ such that (inclusion-wise) maximal simplex of K induces a complete bipartite subgraph of G with at least one edge. If ||K|| is homeomorphic to a topological space X, we say that the natural embedding of G in X is a quadrangulation of X.
- We say that K triangulates the space ||K|| or any space homeomorphic to it.

Main results:

• The authors generalize the lower bound of Youngs.

Theorem 1. If G is a non-bipartite quadrangulation of P^n , then $\chi(G) \ge n+2$.

• The authors show that the family of quadrangulations of projective spaces include all complete graphs and all (generalized) Mycielski graphs. In particular, the chromatic number of quadrangulations of P^n cannot be bounded from above for any n > 2.

Theorem 2. For $n \ge 3$ and $t \ge 5$, the complete graph K_t embeds in P^n as a quadrangulation if t - n is even.

- For positive integers n and k, the Kneser graph KG(n,k) is a graph with the vertex set $\binom{[n]}{k}$ and with edges $\{A, B\}$ where $A, B \in \binom{[n]}{k}$ and $A \cap B = \emptyset$.
- We let $\binom{[n]}{k}_{stab}$ be the set of independent subsets of size k in the cycle C_n with the vertex set [n]. The Schrijver graph SG(n,k) is a graph with the vertex set $\binom{[n]}{k}_{stab}$ and with edges $\{A, B\}$ where $A, B \in \binom{[n]}{k}_{stab}$ and $A \cap B = \emptyset$.

Theorem 3. Let n > 2k and $k \ge 1$. There exists a non-bipartite quadrangulation of P^{n-2k} that is homomorphic to SG(n,k).

• Since SG(n,k) is a subgraph of the Kneser graph KG(n,k), Theorems 1 and 2 give an alternative proof of the Lovász-Kneser theorem, namely $\chi(KG(n,k)) \ge n - 2k + 2$.

Proof of Theorem 1:

- Let K be a generalized simplicial complex and p a non-negative integer. Restricting to \mathbb{Z}_2 coefficients, a pchain of K is a finite formal sum of some of the p-simplices of K and the group of p-chains of K is denoted by $C_p(K, \mathbb{Z}_2)$. The boundary of a p-chain c is denoted by $\partial_p(c)$, where $\partial_p: C_p(K, \mathbb{Z}_2) \to C_{p-1}(K, \mathbb{Z}_2)$ is the boundary operator. The group of p-cycles of $C_p(K, \mathbb{Z}_2)$ is defined as $Z_p(K, \mathbb{Z}_2) := \text{Ker}\partial_p$ and the group of p-boundaries of $C_p(K, \mathbb{Z}_2)$ as $B_p(K, \mathbb{Z}_2) := \text{Im}\partial_{p+1}$. The pth homology group $H_p(K, \mathbb{Z}_2)$ is the quotient $Z_p(K, \mathbb{Z}_2)/B_p(K, \mathbb{Z}_2)$.
- Two p-cycles $c_1, c_2 \in Z_p(K, \mathbb{Z}_2)$ are homologous if there exists a (p+1)-chain d such that $c_1 + c_2 = \partial_{p+1}(d)$.

Lemma 4. In every quadrangulation G of a topological space X, homologous cycles have the same parity; in particular, 0-homologous cycles are even. If $X = P^n$ and G is not bipartite, then every 1-homologous cycle is odd.

- A generalized simplicial complex K is a symmetric triangulation of K if $-\sigma \in K$ for every face $\sigma \in K$.
- A 2-colouring c of K is an arbitrary assignment of two colours to the vertices of K. We say that c is proper if there is no monochromatic maximal simplex. The graph associated to c is a spanning subgraph of $K^{(1)}$ consisting of all edges with vertices colored by distinct colors in c.

Lemma 5. For a graph G, the following statements are equivalent.

- (a) The graph G is a non-bipartite quadrangulation of P^n .
- (b) There is a symmetric triangulation T of S^n such that no simplex of T contains antipodal vertices and there is a proper antisymmetric 2-colouring of T such that G is obtained from the associated graph by identifying all pairs of antipodal vertices.
- For a topological space X, a homeomorphism $\xi \colon X \to X$ is called a \mathbb{Z}_2 -action on X if $\xi^2 = \xi \circ \xi = \operatorname{id}_X$. A \mathbb{Z}_2 -action is *free* if it has no fixed points. A topological space X equipped with a (free) \mathbb{Z}_2 -action is a *(free)* \mathbb{Z}_2 -space.
- Given \mathbb{Z}_2 -spaces (X,ξ) and (Y,ω) , a continuous map $f: X \to Y$ such that $f \circ \xi = \omega \circ f$ is a \mathbb{Z}_2 -map. If there exists a \mathbb{Z}_2 -map from X to Y, we write $X \xrightarrow{\mathbb{Z}_2} Y$. The \mathbb{Z}_2 -coindex of X is defined as

$$\operatorname{coind}(X) := \max\{n \ge 0 \colon S^n \xrightarrow{\mathbb{Z}_2} X\}.$$

• Given a graph G, the set of common neighbours of a set $A \subseteq V(G)$ is defined as

$$CN(A) := \{ v \in V(G) \colon \{a, v\} \in E(G) \text{ for all } a \in A \}.$$

The box complex of a graph G without isolated vertices is the simplicial complex with vertex set $V(G) \times \{1, 2\}$, defined as

$$B(G) := \{A_1 \uplus A_2 \colon A_1, A_2 \subseteq V(G), A_1 \subseteq \operatorname{CN}(A_2) \neq \emptyset, A_2 \subseteq \operatorname{CN}(A_1) \neq \emptyset\},\$$

where we use the notation $A \uplus B$ for the set $(A \times \{1\}) \cup (B \times \{2\})$.

The box complex is equipped with a natural free \mathbb{Z}_2 -action ω which interchanges the two copies of V(G), namely $\omega: (v, 1) \mapsto (v, 2)$ and $\omega: (v, 2) \mapsto (v, 1)$.

Theorem 6 (Lovász, 1978). If G is a graph with no isolated vertices, then $\chi(G) \ge \operatorname{coind}(B(G)) + 2$.