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1 Introduction & notation

‖x‖p p-norm of a vector x ∈ Rd

The number of non-zero components of a vector x - `0 “norm”: ‖x‖0 := |{i | xi 6= 0}|
∆n be the set of probability distributions over the set [n]

vector v ∈ Rn write Supp(v) : {i | vi 6= 0}
X = {x1, x2, . . . , xn} ⊂ Rd : conv(X) = convex hull of X

A vector y ∈ conv(X) is said to be k uniform with respect to X if there exists a size k multiset S

of [n] such that y = 1
k

∑
i∈S xi. ŷ ∈ conv (X)⇔ (̂y) = Cp, p ∈ ∆n, columns of C = x.

2 Approximate Version of Carathéodory’s Theorem

Theorem 1 (Khintchine Inequality). Let r1, r2, . . . , rm be a sequence of i.i.d. Rademacher ±1

random variables, i.e., Pr(ri = ±1) = 1
2 for all i ∈ [m]. In addition, let u1, u2, . . . , um ∈ Rd be a

deterministic sequence of vectors. Then, for 2 ≤ p <∞

E

∥∥∥∥∥
m∑
i=1

riui

∥∥∥∥∥
p

≤ √p

(
m∑
i=1

‖ui‖2p

) 1
2

. (1)

Theorem 2. Given a set of vectors X = {x1, x2, . . . , xn} ⊂ Rd and ε > 0. For every µ ∈ conv(X)

and 2 ≤ p < ∞ there exists an 4pγ2

ε2
uniform vector µ′ ∈ conv(X) such that ‖µ − µ′‖p ≤ ε. Here,

γ := maxx∈X ‖x‖p.

Theorem 3. Given a set of vectors X = {x1, x2, . . . , xn} ⊂ Rd, with maxx∈X ‖x‖∞ ≤ 1, and

ε > 0. For every µ ∈ conv(X) there exists an O
(
logn
ε2

)
uniform vector µ′ ∈ conv(X) such that

‖µ− µ′‖∞ ≤ ε.

3 Computing Approximate Nash Equilibrium

Bimatrix Games. two player games specified by a pair of n×n matrices (A,B) (payoff matrices).

The row player has payoff matrix A, the column player, has payoff matrix B. The strategy set

for each player is [n] = {1, 2, . . . , n}, and, if the row player plays strategy i and column player

plays strategy j, then the payoffs of the two players are Aij and Bij respectively. We assume
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x = (x1, . . . , xn) mixed strategy for row player (xi = probability if i-th strategy), y mixed strategy

for columns, Aij , Bij ∈ [−1, 1] for all i, j ∈ [n].

The expected payoff of the row player is xTAy and the expected payoff of the column player is

xTBy.

Definition 1. A mixed strategy pair (x, y), x, y ∈ ∆n, is said to be

a) Nash equilibrium if and only if:

xTAy ≥ eTi Ay ∀ i ∈ [n] and (2)

xTBy ≥ xTBej ∀ j ∈ [n]. (3)

b) ε-Nash equilibrium if and only if:

xTAy ≥ eTi Ay − ε ∀ i ∈ [n] and (4)

xTBy ≥ xTBej − ε ∀ j ∈ [n]. (5)

Definition 2 (s-Sparse Games). The sparsity of a game (A,B) is defined to be s := max{maxi ‖Ci‖0, 4},
where matrix C = A+B.

Theorem 4. Let A,B ∈ [−1, 1]n×n be the payoff matrices of an s-sparse bimatrix game. Then, an

ε-Nash equilibrium of (A,B) can be computed in time n
O
(

log s

ε2

)
.

Bilinear program.

max
x,y,π1,π2

xTCy − π1 − π2

subject to xTB ≤ 1
Tπ2

Ay ≤ 1π1

x, y ∈ ∆n

π1, π2 ∈ [−1, 1]. (BP)

Theorem 5 (Equivalence Theorem). Mixed strategy pair (x̂, ŷ) is a Nash equilibrium of the game

(A,B) if and only if x̂, ŷ, π̂1, and π̂2 form an optimal solution of the bilinear program (BP), for

some scalars π̂1 and π̂2. In addition, the optimal value achieved by (BP) is equal to zero and the

payoffs of the row and column player at this equilibrium are π̂1 and π̂2 respectively.

Lemma 1. Let x, y ∈ ∆n along with scalars π1 and π2 form a feasible solution of (BP) that achieves

an objective function value more than −ε, i.e., xTCy ≥ π1 + π2 − ε. Then, (x, y) is an ε-Nash

equilibrium of the game (A,B).

Remark 1. Consider the class of games in which the p norm of the columns of matrix C is a fixed

constant. A simple modification of the arguments mentioned above shows that for such games an

ε-Nash equilibrium can be computed in time n
O
(

p

ε2

)
.
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Algorithm 1 Algorithm for computing ε-Nash equilibrium in s-sparse games

Given payoff matrices A,B ∈ [−1, 1]n×n and ε > 0; Return: ε-Nash equilibrium of (A,B)

1: Write s to denote the sparsity of the game (A,B) and let p = log s ( p ≥ 2 ).

2: Let U be the collection of all multisets of {1, 2, . . . , n} of cardinality at most κ p
ε2

, where κ is a

fixed constant.

3: Write Ci to denote the ith column of matrix C = A+B, for i ∈ [n].

4: for all multisets S ∈ U do

5: Set u = 1
|S|
∑

i∈S C
i.

{u is an |S|-uniform vector in the convex hull of the columns of C.}
6: Solve convex program CP(u).

7: if the objective function value of CP(u) is less than ε/2 then

8: Return (x, y), where x and y form an optimal solution of CP(u).

9: end if

10: end for

Remark 2. Algorithm 1 can be adopted to find an approximate Nash equilibrium with large social

welfare (the total payoffs of the players). Specifically, in order to determine whether there exists

an approximate Nash equilibrium with social welfare more than α − ε, we include the constraint

π1 + π2 ≥ α in CP(u). The time complexity of the algorithm stays the same, and then via a binary

search over α we can find an approximate Nash equilibrium with near-optimal social welfare.

4 Applications

4.1 Small Probability Games

Theorem 6. Let A,B ∈ [−1, 1]n×n be the payoff matrices of an s-sparse bimatrix game. If (A,B)

contains an m-small probability Nash equilibrium, then an ε-Nash equilibrium of the game can be

computed in time n
O
(

t
ε2

)
, where t = max

{
2 log

(
s
m

)
, 2
}

.

4.2 Densest Subgraph

Densest Subgraph. The normalized densest k-subgraph problem (NDkS): find size-k subgraph

of maximum density (number of edges in the subgraph divided by k2).

Theorem 7. Let G be a graph with n vertices and maximum degree d. Then, an ε-additive ap-

proximation of NDkS over G can be determined in time n
O
(

log d

ε2

)
.

Theorem 8. Let G be a graph with n vertices and maximum degree d. Then, there exists an

algorithm that runs in time n
O
(

log d

ε2

)
and computes a k × k-bipartite subgraph of density at least

ρ(S∗, T ∗)− ε.
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4.3 Approximating Colorful Carathéodory and Tverberg’s Theorem

Theorem 9 (Colorful Carathéodory Theorem). Let X1, X2, . . . , Xd+1 be d+1 sets in Rd and vector

µ ∈ ∩iconv(Xi). Then, there exists d+ 1 vectors x1, x2, . . . , xd+1 such that xi ∈ Xi for each i and

µ ∈ conv({x1, x2, . . . , xd+1}).

Theorem 10 (Tverberg’s Theorem). Any set of (r − 1)(d + 1) + 1 vectors X ⊂ Rd can be parti-

tioned into r pairwise disjoint subsets X1, X2, . . . , Xr ⊆ X such that their convex hulls intersect:

∩ri=1conv(Xi) 6= φ.

Definition 3 (Concurrently ε close). Sets V1, V2, ..., Vr ⊂ Rd are said to be concurrently ε close

under the p-norm distance if there exists a vector µ ∈ Rd such that infv∈conv(Vi) ‖µ − v‖p ≤ ε, for

all i ∈ [r].

Theorem 11. Let norm p ∈ [2,∞) and parameter ε > 0. Then, any set of (r − 1)(d + 1) + 1

vectors X ⊂ Rd can be partitioned into r pairwise disjoint subsets X ′1, X
′
2, . . . , X

′
r ⊆ X that are

concurrently ε close under the p-norm distance and satisfy |X ′i| = O
(
pγ2

ε2

)
, for all i ∈ [r]. Here,

γ := maxx∈X ‖x‖p.
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