Tverberg plus constraints

P. V. M. Blagojević, F. Frick & G. M. Ziegler

April 2, 2015

presented by Vojtěch Kaluža

Definition (Simplex): A d-dim *simplex* is a convex hull of d+1 affinely independent vectors. For example: conv ($\{0, e_1, \ldots, e_d\}$) in \mathbb{R}^d .

• Every subset of its vertices determines its proper face.

Definition (Simplicial complex): Let K be a set of simplices such that

- (i) $\forall \sigma \in K \text{ and for every face } \tau \text{ of } \sigma \text{ also } \tau \in K$
- (ii) $\forall \sigma, \tau \in K$ the intersection $\sigma \cap \tau$ is a face of both σ and τ

Then K is a simplicial complex.

Definition (Subcomplex): Let K be a simplicial complex. The set $L \subseteq K$ is its **subcomplex** if it is also a simplicial complex. (\Leftrightarrow The property (i) from the above definition holds for L.)

Theorem (Affine Tverberg Theorem): Let $d \ge 1$ and $r \ge 2$ be integers, and N = (r-1)(d+1). For any affine map $f: \Delta_N \to \mathbb{R}^d$ there are r pairwise disjoint faces $\sigma_1, \ldots, \sigma_r$ of Δ_N such that $f(\sigma_1) \cap \cdots \cap f(\sigma_r) \ne \emptyset$.

Definition (Tverberg (r)-partition): The set of r pairwise disjoint simplices $\sigma_1, \ldots, \sigma_r$ of Δ_N such that $f(\sigma_1) \cap \cdots \cap f(\sigma_r) \neq \emptyset$ is called a **Tverberg r-partition**.

Theorem (Topological Tverberg Theorem): Let $r \ge 2$, $d \ge 1$, and N = (r-1)(d+1). If r is a prime power, then for every continuous map $f : \Delta_N \to \mathbb{R}^d$ there are r pairwise disjoint faces $\sigma_1, \ldots, \sigma_r$ of Δ_N such that $f(\sigma_1) \cap \cdots \cap f(\sigma_r) \neq \emptyset$.

Lemma (Key Lemma 1): Let $r \ge 2$ be a prime power, $d \ge 1$, and $c \ge 0$. Let $N \ge N_c := (r-1)(d+1+c)$ and let $f : \Delta_N \to \mathbb{R}^d$ and $g : \Delta_N \to \mathbb{R}^c$ be continuous. Then there are r points $x_i \in \sigma_i$, where $\sigma_1, \ldots, \sigma_r$ are pairwise disjoint faces of Δ_N with $g(x_1) = \cdots = g(x_r)$ and $f(x_1) = \cdots = f(x_r)$.

Definition (Tverberg unavoidable subcomplex): Let $r \ge 2$, $d \ge 1$, $N \ge r-1$ be integers and $f: \Delta_N \to \mathbb{R}^d$ a continuous map with at least one Tverberg r-partition. Then a subcomplex $\Sigma \subseteq \Delta_N$ is **Tverberg unavoidable** \iff For every Tverberg partition $\sigma_1, \ldots, \sigma_r$ for f there is at least one face σ_i that lies in Σ .

Definition (k-skeleton): The **k**-skeleton $K^{(k)}$ of a simplicial complex K is its subcomplex consisting of all faces of dimension at most k.

Lemma (Key examples): Let $d \ge 1$, $r \ge 2$, and $N \ge r - 1$. Assume that the continuous map $f : \Delta_N \to \mathbb{R}^d$ has a Tverberg r-partition. Then the following holds:

1. The induced subcomplex (simplex) $\Delta_{N-(r-1)}$ on N-r+2 vertices of Δ_N is Tverberg unavoidable.

- 2. For any set S of at most 2r 1 vertices in Δ_N the subcomplex of faces with at most one vertex in S is Tverberg unavoidable.
- 3. If k is an integer such that r(k+2) > N+1, then the k-skeleton $\Delta_N^{(k)}$ of Δ_N is Tverberg unavoidable.
- 4. If $k \ge 0$ and s are integers such that r(k+1) + s > N+1 with $0 \le s \le r$, then the subcomplex $\Delta_N^{(k-1)} \cup \Delta_{N-(r-s)}^{(k)}$ of Δ_N is Tverberg unavoidable.

Lemma (Key Lemma 2): Let $r \ge 2$ be a prime power, $d \ge 1$.

- a) Let $N \ge N_1 = (r-1)(d+2)$. Assume that $f : \Delta_N \to \mathbb{R}^d$ is continuous and that the subcomplex $\Sigma \subseteq \Delta_N$ is Tverberg unavoidable for f. Then there are r pairwise disjoint faces $\sigma_1, \ldots, \sigma_r$ of Δ_N , all of them contained in Σ , such that $f(\sigma_1) \cap \cdots \cap f(\sigma_r) \neq \emptyset$.
- b) Let $c \ge 1$, and $N \ge N_c = (r-1)(d+1+c)$. Let $f : \Delta_N \to \mathbb{R}^d$ be continuous and let $\Sigma_1, \Sigma_2, \ldots, \Sigma_c \subseteq \Delta_N$ be Tverberg unavoidable subcomplexes for f. Then there are r pairwise disjoint faces $\sigma_1, \ldots, \sigma_r$ in $\Sigma_1 \cap \cdots \cap \Sigma_c$ such that $f(\sigma_1) \cap \cdots \cap f(\sigma_r) \neq \emptyset$.

Definition (Rainbow complex, rainbow simplex): Suppose that the vertices of Δ_N are colored. Denote by $R \subseteq \Delta_N$ the **rainbow complex**, i.e., the subcomplex of faces that have at most one vertex of each color class. These faces are called **rainbow faces**.

Theorem (Variant of colored Tverberg)(5.4): Let $r \ge 2$ be a prime power, $d \ge 1$, $c \ge \lceil \frac{r-1}{r}d\rceil + 1$, and $N \ge N_c = (r-1)(d+1+c)$. Let $f : \Delta_N \to \mathbb{R}^d$ be continuous. If the vertices of Δ_N are divided into c color classes, each of cardinality at most 2r-1, then there are r pairwise disjoint rainbow faces $\sigma_1, \ldots, \sigma_r$ of Δ_N such that $f(\sigma_1) \cap \cdots \cap f(\sigma_r) \neq \emptyset$.

Theorem (Optimal colored Tverberg): Let $r \ge 2$ be a prime, $d \ge 1$, and $N \ge N_0 = (r-1)(d+1)$. Let the vertices of Δ_N be colored by m+1 colors C_0, \ldots, C_m with $|C_i| \le r-1$ for all i. Then for every continuous map $f : \Delta_N \to \mathbb{R}^d$ there are r pairwise disjoint rainbow faces $\sigma_1, \ldots, \sigma_r$ of Δ_N such that $f(\sigma_1) \cap \cdots \cap f(\sigma_r) \ne \emptyset$.

Theorem (Generalized optimal colored Tverberg)(9.2): Let $r \ge 2$ be a prime, $d \ge 1$, $\ell \ge 0$, and $k \ge 0$. Let the vertices of Δ_N be colored by $\ell + k$ colors $C_0, \ldots, C_{\ell+k-1}$ with $|C_0| \le r-1, \ldots,$ $|C_{\ell-1}| \le r-1$ and $|C_{\ell}| \ge 2r-1, \ldots, |C_{\ell+k-1}| \ge 2r-1$, where $|C_0| + \cdots + |C_{\ell-1}| > (r-1)(d-k+1)-k$. Then for every continuous map $f : \Delta_N \to \mathbb{R}^d$ there are r pairwise disjoint rainbow faces $\sigma_1, \ldots, \sigma_r$ of Δ_N such that $f(\sigma_1) \cap \cdots \cap f(\sigma_r) \ne \emptyset$.

Theorem (van Kampen-Flores): Let $d \ge 2$ be even. Then for every continuous map $f : \Delta_{d+2} \to \mathbb{R}^d$ there are two disjoint faces $\sigma_1, \sigma_2 \subset \Delta_{d+2}$ of dimension at most $\frac{d}{2}$ in Δ_{d+2} with $f(\sigma_1) \cap f(\sigma_2) \neq \emptyset$.

Theorem (Generalized van Kampen-Flores)(6.2): Let $r \ge 2$ be a prime power, $2 \le j \le r$, $d \ge 1$, and k < d such that there is an integer $m \ge 0$ that satisfies

$$(r-1)(m+1) + r(k+1) \ge (N+1)(j-1) > (r-1)(m+d+2).$$

Then for every continuous map $f : \Delta_N \to \mathbb{R}^d$ there are r j-wise disjoint faces $\sigma_1, \ldots, \sigma_r$ of Δ_N with $\dim \sigma_i \leq k$ for $1 \leq i \leq r$ such that $f(\sigma_1) \cap \cdots \cap f(\sigma_r) \neq \emptyset$.

Theorem (Generalized and sharpened van Kampen-Flores): Let $r \ge 2$ be a prime power, $2 \le j \le r$, $d \ge 1$, and $k \le N$ such that

$$k \geq \frac{r-1}{r}d \quad and \quad N+1 > \frac{r-1}{j-1}(d+2).$$

Then for every continuous map $f : \Delta_N \to \mathbb{R}^d$ there are r j-wise disjoint faces $\sigma_1, \ldots, \sigma_r$ of Δ_N , with $\dim \sigma_i \leq k$ for $1 \leq i \leq r$, such that $f(\sigma_1) \cap \cdots \cap f(\sigma_r) \neq \emptyset$.