THREESOMES, DEGENERATES, AND LOVE TRIANGLE

Allan Gronlund

Seth Pettie

In 3Sum problem, given n real numbers one have to decide whether any three numbers sum to zero. The 3SUM conjecture gives a $\Omega(n^2)$ lower bound. In this paper 3SUM conjecture is refuted by showing subquadratic decision tree and algorithmic complexity for 3SUM. This result also gives improved bounds for k linear degeneracy testing for all odd $k \geq 3$. A subcubic algorithm for generalized (min,+) product has also been proven which indeed helps to find zero weight triangles in weighted graphs.

<u>Problems</u> :

- **3** SUM : Given a set $A \subset \mathbb{R}$, determine if there exist a, b, c \in A such that a+b+c=0.
- Integer 3SUM : Given a set $A \subseteq \{-U, ..., U\} \subset \mathbb{Z}$, determine if there exist a, b, c \in A such that a+b+c=0.
- **k-LDT and k-SUM :** Fix a k-variate linear function $\phi(x_1, ..., x_k) = \alpha_0 + \sum_{i=1}^{1} \alpha_i x_i$, where $\alpha_0, ..., \alpha_k \in \mathbb{R}$. Give a set $A \subset \mathbb{R}$, determine is $\phi(x) = 0$ for any $x \in A^k$. when ϕ is $\sum_{i=1}^{1} x_i$ the problem is called k-SUM.
- Zero Triangle : Given a weighted undirected graph G=(V, E, w), where $w : E \to \mathbb{R}$, determine if there exist a triangle $(a, b, c) \in V^3$ for which w(a,b)+w(b,c)+w(c,a)=0.
- Convolution3SUM : Given a vector $A \in \mathbb{R}^n$, determine if there exist i.j for which A(i) + A(j) = A(i+j).
- IntegerConv3SUM : The same as Convolution3SUM, except that $A \in \{0, ..., U-1\}^n$ and $U \leq 2^w$, where $w = \Omega(logn)$ is the machine word size.
- (min, +)-product : Given real matrices $A \in (\mathbb{R} \cup \{\infty\})^{r \times s}, B \in (\mathbb{R} \cup \{\infty\})^{s \times t}$, and a target matrix $T \in (\mathbb{R} \cup \{\infty\})^{r \times t}$, the goal is to compute $C = \odot(A, B, T)$, where

 $C(i, j) = \min\{A(i, k) + B(k, j) | k \in [s] and A(i, k) + B(k, j) \ge T(i, j)\}$

Some Reductions :

- Patrascu defined Convolution3SUM and gave reduction from Integer3SUM to Convolution3SUM.
- William gave a reduction from Convolution3SUM to Zero Triangle.
- Hence an $O(n^2)$ bound for zero triangle gives $O(n^{9/5})$ bound on Integer3SUM.

Lemmas Used :

Lemma 1.(*Fredman 1976*) A list of n numbers whose sorted order is one of \prod permutations can be sorted with $2n + \log \prod$ pairwise comparisons.

Lemma 2. (Buck 1943) Consider the partition of space defined by an arrangement of m hyperplanes in \mathbb{R}^d . The number of regions of dimension $k \leq d$ is at most

$$\begin{pmatrix} m \\ d-k \end{pmatrix} \left(\begin{pmatrix} m-d+k \\ 0 \end{pmatrix} + \begin{pmatrix} m-d+k \\ 1 \end{pmatrix} + \dots + \begin{pmatrix} m-d+k \\ k \end{pmatrix} \right)$$

and the number of regions of all dimensions is $O(m^d)$.

Lemma 3. Let $A = a_{ii \in [n]}$ be two lists of numbers and let $F \subseteq [n]^2$ be a set of positions in $n \prod n$ grid. the number of realizable orders of $(A + B)_{|F} = \{a_i + b_j | (i, j) \in F\}$ is $O(\binom{|F|}{2}^{2n})$ and therefore $(A+B)_{|F}$ can be sorted with at most 2|F|+2nlog|F|+O(1)comparisons.

Lemma 4. Let $A = (a_i)$ and $B = (b_i)$ be two list of numbers. Define $a'_i = (a_i, i, 0)$ and $b'_j = (b_j, 0, j)$. The Cartesian sum A'+B' is totally ordered, and is a linear extension of the partially ordered A+B. (Addition over tuples is pointwise addition; tuples are ordered lexicogaphically. The tuple (u, v, w) can be regarded as a representation of a real number $u + \epsilon_1 v + \epsilon_2 w$ where $\epsilon_1 \gg \epsilon_2$ are sufficiently small so as not to invert strictly ordered elements A+B)

Lemma 5. (Biochromatic Dominance Reporting) Given a set $P \subseteq \mathbb{R}^d$ of red and blue points, it is possible to return all biochromatic dominating pairs $(p,q) \in P^2$ in time linear in the output size and $c_{\epsilon}^d |P|^{1+\epsilon}$. Here $\epsilon \in (0,1)$ is arbitrary and $c_{\epsilon} = 2^{\epsilon}/(2^{\epsilon}-1)$.

<u>Results</u> :

Theorem1. There is a 4-linear decision tree for 3SUM with depth $O(n^{3/2}\sqrt{\log n})$. Furthermore, 3SUM can be solved deterministically in $O(n^2/(\log n/\log \log n)^{2/3})$ time and in $O(n^2(\log \log n)^2/\log n)$ time using randomization.

Theorem2. When $k \ge 3$ is odd, there is a (2k-2)-linear decision tree for k-LDT with depth $O(n^{k/2}\sqrt{\log n})$.

Theorem3. The decision tree complexity of Zero Triangle is $O(n^{5/2}\sqrt{\log n})$ on nvertex graph and randomized decision tree complexity is $O(n^{5/2})$ with high probability. Also it can be solved deterministically in $O(n^3(\log \log n)^2/\log n)$ time and in time $O(n^3 \log \log n/\log n)$ time using randomization with high probability.

Theorem4. The decision tree complexity of Zero Triangle on m-edge graphs is $O(m^{5/4}\sqrt{\log m})$ and, using randomization, $O(m^{5/4})$ with high probability. It can be solved in $O(m^{3/2}(\log \log m)^2/\log m)$ time deterministically or $O(m^{3/2}\log \log m/\log m)$ with high probability.

Theorem5. The decision tree complexity of Convolution3SUM is $O(n^{3/2}\sqrt{\log n})$ and its randomized decision tree complexity is $O(n^{3/2})$ with high probability. The Convolution3SUM problem can be solved in $O(n^2(\log \log n)^2/\log n)$ time deterministically, or in $O(n^2 \log \log n/\log n)$ time with high probability.