Threesomes, Degenerates, and Love Triangle

Allan Gronlund Seth Pettie

In 3Sum problem, given n real numbers one have to decide whether any three numbers sum to zero. The 3SUM conjecture gives a $\Omega\left(n^{2}\right)$ lower bound. In this paper 3SUM conjecture is refuted by showing subquadratic decision tree and algorithmic complexity for 3SUM. This result also gives improved bounds for k linear degeneracy testing for all odd $\mathrm{k} \geq 3$. A subcubic algorithm for generalized ($\mathrm{min},+$) product has also been proven which indeed helps to find zero weight triangles in weighted graphs.

Problems :

- 3 SUM : Given a set $A \subset \mathbb{R}$, determine if there exist $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{A}$ such that $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$.
- Integer 3SUM : Given a set $A \subseteq\{-U, \ldots, U\} \subset \mathbb{Z}$, determine if there exist a, $\mathrm{b}, \mathrm{c} \in \mathrm{A}$ such that $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$.
- k-LDT and k-SUM : Fix a k-variate linear function $\phi\left(x_{1}, \ldots, x_{k}\right)=\alpha_{0}+\sum_{i=1}^{1} \alpha_{i} x_{i}$, where $\alpha_{0}, \ldots, \alpha_{k} \in \mathbb{R}$. Give a set $A \subset \mathbb{R}$, determine is $\phi(x)=0$ for any $x \in A^{k}$. when ϕ is $\Sigma_{i=1}^{1} x_{i}$ the problem is called k -SUM.
- Zero Triangle : Given a weighted undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E}, \mathrm{w})$, where $w: E \rightarrow$ \mathbb{R}, determine if there exist a triangle $(a, b, c) \in V^{3}$ for which $\mathrm{w}(\mathrm{a}, \mathrm{b})+\mathrm{w}(\mathrm{b}, \mathrm{c})+\mathrm{w}(\mathrm{c}, \mathrm{a})=0$.
- Convolution3SUM : Given a vector $A \in \mathbb{R}^{n}$, determine if there exist i.j for which $A(i)+A(j)=A(i+j)$.
- IntegerConv3SUM : The same as Convolution3SUM, except that $A \in\{0, \ldots, U-1\}^{n}$ and $U \leq 2^{w}$, where $w=\Omega(\log n)$ is the machine word size.
- (min, +)-product : Given real matrices $A \in(\mathbb{R} \cup\{\infty\})^{r \times s}, B \in(\mathbb{R} \cup\{\infty\})^{s \times t}$, and a target matrix $T \in(\mathbb{R} \cup\{\infty\})^{r \times t}$, the goal is to compute $C=\odot(A, B, T)$, where

$$
C(i, j)=\min \{A(i, k)+B(k, j) \mid k \in[s] \operatorname{and} A(i, k)+B(k, j) \geq T(i, j)\}
$$

Some Reductions :

- Patrascu defined Convolution3SUM and gave reduction from Integer3SUM to Convolution3SUM.
- William gave a reduction from Convolution3SUM to Zero Triangle.
- Hence an $O\left(n^{2}\right)$ bound for zero triangle gives $O\left(n^{9 / 5}\right)$ bound on Integer3SUM.

Lemmas Used :

Lemma 1. (Fredman 1976) A list of n numbers whose sorted order is one of Π permutations can be sorted with $2 n+\log \prod$ pairwise comparisons.

Lemma 2.(Buck 1943) Consider the partition of space defined by an arrangement of m hyperplanes in \mathbb{R}^{d}. The number of regions of dimension $k \leq d$ is at most

$$
\binom{m}{d-k} \quad\left(\binom{m-d+k}{0}+\binom{m-d+k}{1}+\ldots+\binom{m-d+k}{k}\right)
$$

and the number of regions of all dimensions is $O\left(m^{d}\right)$.
Lemma 3. Let $A=a_{i i \in[n]}$ be two lists of numbers and let $F \subseteq[n]^{2}$ be a set of positions in $n \prod n$ grid. the number of realizable orders of $(A+B)_{\mid F}=\left\{a_{i}+b_{j} \mid(i, j) \in F\right\}$ is $\mathrm{O}\left(\binom{|F|}{2}^{2 n}\right)$ and therefore $(A+B)_{\mid F}$ can be sorted with at most $2|F|+2 n \log |F|+O(1)$ comparisons.

Lemma 4. Let $A=\left(a_{i}\right)$ and $B=\left(b_{i}\right)$ be two list of numbers. Define $a_{i}^{\prime}=\left(a_{i}, i, 0\right)$ and $b_{j}^{\prime}=\left(b_{j}, 0, j\right)$. The Cartesian sum $\mathrm{A}^{\prime}+\mathrm{B}^{\prime}$ is totally ordered, and is a linear extension of the partially ordered $\mathrm{A}+\mathrm{B}$. (Addition over tuples is pointwise addition; tuples are ordered lexicogaphically. The tuple ($\mathrm{u}, \mathrm{v}, \mathrm{w}$) can be regarded as a representation of a real number $u+\epsilon_{1} v+\epsilon_{2} w$ where $\epsilon_{1} \gg \epsilon_{2}$ are sufficiently small so as not to invert strictly ordered elements $\mathrm{A}+\mathrm{B}$)

Lemma 5. (Biochromatic Dominance Reporting) Given a set $P \subseteq \mathbb{R}^{d}$ of red and blue points, it is possible to return all biochromatic dominating pairs $(p, q) \in P^{2}$ in time linear in the output size and $c_{\epsilon}^{d}|P|^{1+\epsilon}$. Here $\epsilon \in(0,1)$ is arbitrary and $c_{\epsilon}=2^{\epsilon} /\left(2^{\epsilon}-1\right)$.

Results:

Theorem1. There is a 4 -linear decision tree for 3 SUM with depth $O\left(n^{3 / 2} \sqrt{\log n}\right)$. Furthermore, 3SUM can be solved deterministically in $O\left(n^{2} /(\log n / \log \log n)^{2 / 3}\right)$ time and in $O\left(n^{2}(\log \log \mathrm{n})^{2} / \log \mathrm{n}\right)$ time using randomization.

Theorem2.When $k \geq 3$ is odd, there is a ($2 \mathrm{k}-2$-linear decision tree for k -LDT with depth $O\left(n^{k / 2} \sqrt{\log \mathrm{n}}\right)$.

Theorem3. The decision tree complexity of Zero Triangle is $O\left(n^{5 / 2} \sqrt{\log n}\right)$ on $\mathrm{n}-$ vertex graph and randomized decision tree complexity is $O\left(n^{5 / 2}\right)$ with high probability. Also it can be solved deterministically in $O\left(n^{3}(\log \log n)^{2} / \log \mathrm{n}\right)$ time and in time $O\left(n^{3} \log \log \mathrm{n} / \log \mathrm{n}\right)$ time using randomization with high probability.

Theorem4.The decision tree complexity of Zero Triangle on m-edge graphs is $O\left(m^{5 / 4} \sqrt{\log m}\right)$ and, using randomization, $O\left(m^{5 / 4}\right)$ with high probability. It can be solved in $O\left(m^{3 / 2}(\log \log \mathrm{~m})^{2} / \log \mathrm{m}\right)$ time deterministically or $O\left(m^{3 / 2} \log \log \mathrm{~m} / \log \mathrm{m}\right)$ with high probability.

Theorem5. The decision tree complexity of Convolution3SUM is $O\left(n^{3 / 2} \sqrt{\log n}\right)$ and its randomized decision tree complexity is $O\left(n^{3 / 2}\right)$ with high probability. The Convolution3SUM problem can be solved in $O\left(n^{2}(\log \log \mathrm{n})^{2} / \log \mathrm{n}\right)$ time deterministically, or in $O\left(n^{2} \log \log \mathrm{n} / \log \mathrm{n}\right)$ time with high probability.

