The matching polytope has exponential extension complexity

Thomas Rothvoß

November 27, 2014
presented by Vojtěch Kaluža

Notation.

- The formulas $F \sim \mathcal{A}$ and $F \in_{\mathcal{U}} \mathcal{A}$ means that F is a uniformly random element of \mathcal{A}.
- We use only uniform distribution, no other probability distributions are considered.

Definition (Perfect matching polytope): $P_{M}=\operatorname{conv}\left\{\chi_{M} \in \mathbb{R}^{E} \mid M \subseteq E\right.$ is a perfect matching $\}$ $\stackrel{\text { Edmonds }}{=}\left\{x \in \mathbb{R}^{E}\left|x(\delta(v))=1 \forall v \in V ; x(\delta(U)) \geq 1 \forall U \subseteq V,|U|\right.\right.$ odd $\left.; x_{e} \geq 0 \forall e \in E\right\}$.

Definition (Extension complexity): The extension complexity $\operatorname{xc}(P)$ of a polytope P is defined as the minimal number of facets of a higher dimensional polytope Q s.t. there is a linear projection π satisfying $\pi(Q)=P$.
Theorem 1 (Rothvoß): For all $n \in \mathbb{N}, \operatorname{xc}\left(P_{M}\right) \geq 2^{\Omega(n)}$ in the complete n-node graph.
Fact: If P is a linear projection of a face of P^{\prime}, then $\mathrm{xc}(P) \leq \mathrm{xc}\left(P^{\prime}\right)$.
Corollary 2: Because Yannakakis described a linear projection of a face of $P_{T S P}$ of $O(n)$-node complete graph onto P_{M} of n-node complete graph, we have $\operatorname{xc}\left(P_{T S P}\right) \geq 2^{\Omega(n)}$, too.

Definition (Slack matrix): Let $P=\operatorname{conv}\left\{x_{1}, \ldots, x_{v}\right\}=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$, where $A \in \mathbb{R}^{f \times n}$. We define the slack matrix $S \in \mathbb{R}_{\geq 0}^{f \times v}$ as $S_{i j}=b_{i}-A_{i} x_{j}$, i.e. $S_{i j}$ is the slack of the j-th vertex in the i-th inequality.

Definition (Non-negative rank): The non-negative rank $\mathrm{rk}_{+}(S)$ of a matrix S is defined as $\mathrm{rk}_{+}(S)=\min \left\{r \mid\left(\exists U \in \mathbb{R}_{\geq 0}^{f \times r}\right)\left(\exists V \in \mathbb{R}_{\geq 0}^{r \times v}\right)(S=U V)\right\}$.

Theorem 3 (Yannakakis 91): Let P be a polytope with vertices $\left\{x_{1}, \ldots, x_{v}\right\}, P=\left\{x \in \mathbb{R}^{n} \mid A x \leq\right.$ b\}, let S be its slack matrix. Then

- $\mathrm{xc}(P)=\mathrm{rk}_{+}(S)$
- Moreover, the minimal extended formulation of P can be obtained by factoring $S=U V$, where U, V come from the definition of rk_{+}, and writing $P=\left\{x \in \mathbb{R}^{n} \mid(\exists y \geq 0)(A x+U y=b)\right\}$
Lemma 4 (Hyperplane separation lower bound): Let $S \in \mathbb{R}_{\geq 0}^{f \times v}$ be the slack matrix of a polytope P and $W \in \mathbb{R}^{f \times v}$ be any matrix. Then

$$
\mathrm{xc}(P) \geq \frac{\langle W, S\rangle}{\|S\|_{\infty} \cdot \alpha} \quad \text { where } \alpha=\max \left\{\langle W, R\rangle \mid R \in\{0,1\}^{f \times v} \text { rank 1-matrix }\right\}
$$

Notation.

- Choose a parameter $k>3$ odd, $t=\frac{m+1}{2}(k-3)+3$ is an odd magic constant.
- $\mathcal{M}_{\text {all }}=\{M \subseteq E \mid M$ is a perfect matching $\}$
- $\mathcal{U}_{\text {all }}=\{U \subseteq V| | U \mid=t\}$
- $Q_{l}=\left\{(U, M) \in \mathcal{M}_{\text {all }} \times \mathcal{U}_{\text {all }}| | \delta(U) \cap M \mid=l\right\}$, μ_{l} the uniform measure on Q_{l}
- Rectangle $\mathcal{R}=\mathcal{U} \times \mathcal{M}$ where $\mathcal{U} \subseteq \mathcal{U}_{\text {all }}$ and $\mathcal{M} \subseteq \mathcal{M}_{\text {all }}$

Lemma 6: For all $k>3$ odd and for all rectangles \mathcal{R} with $\mu_{1}(\mathcal{R})=0$ we have that $\mu_{3}(\mathcal{R}) \leq$ $\frac{400}{k^{2}} \cdot \mu_{k}(\mathcal{R})+2^{-\delta m}$, where $\delta=\delta(k)>0$ is a constant.
Definition (Partition): A partition is a tuple $T=\left(A=\dot{\bigcup}_{i=1}^{m} A_{i}, C, D, B=\dot{U}_{i=1}^{m} B_{i}\right)$ with $V=$ $A \dot{\cup} C \dot{\cup} D \dot{\cup} B,|C|=|D|=k$ and $\left|A_{i}\right|=k-3,\left|B_{i}\right|=2(k-3)$ for every $i \in[m]$.

Notation.

- $E(T)=\dot{\bigcup}_{i=1}^{m} E\left(A_{i}\right) \dot{\cup} E(C \cup D) \dot{\cup} \dot{\bigcup}_{i=1}^{m} E\left(B_{i}\right)$
- $\mathcal{M}(T)=\{M \in \mathcal{M} \mid M \subseteq E(T)\}$
- $\mathcal{M}_{\text {all }}(T)=\left\{M \in \mathcal{M}_{\text {all }} \mid M \subseteq E(T)\right\}$
- $\mathcal{U}(T)=\left\{U \in \mathcal{U} \mid U \subseteq A \cup C\right.$ with $\left.\left|U \cap A_{i}\right| \in\left\{0,\left|A_{i}\right|\right\} \forall i \in[m]\right\}$
- $\mathcal{U}_{\text {all }}(T)=\left\{U \in \mathcal{U}_{\text {all }} \mid U \subseteq A \cup C\right.$ with $\left.\left|U \cap A_{i}\right| \in\left\{0,\left|A_{i}\right|\right\} \forall i \in[m]\right\}$
- $p_{\mathcal{M}, T}(H)=\operatorname{Pr}_{M \sim \mathcal{M}_{\text {all }}(T)}[M \in \mathcal{M} \mid H \subseteq M]$
- $p_{\mathcal{M}, T}^{e x}(H)=\operatorname{Pr}_{M \sim \mathcal{M}_{\text {all }}(T)}[M \in \mathcal{M} \mid M \cap \delta(C)=H]$
- $p_{\mathcal{U}, T}(c)=\operatorname{Pr}_{U \sim \mathcal{U}_{\text {all }}(T)}[U \in \mathcal{U} \mid c \subseteq U]$, where $c \subseteq C$
- $p_{\mathcal{U}, T}^{e x}(c)=\operatorname{Pr}_{U \sim \mathcal{U}_{\text {all }}(T)}[U \in \mathcal{U} \mid C \cap U=c]$, where $c \subseteq C$
- $p_{\mathcal{U}, T}^{e x}(H)=p_{\mathcal{U}, T}^{e x}(V(H) \cap C)$ for a matching $H \subseteq C \times D$

Definition (\mathcal{M}-good): Let T be a partition and H a 3-matching in $C \times D$. Then (T, H) is called \mathcal{M}-good $\Longleftrightarrow 0<\frac{1}{1+\epsilon} p_{\mathcal{M}, T}(H) \leq p_{\mathcal{M}, T}(F) \leq(1+\epsilon) p_{\mathcal{M}, T}(H)$ for every k-matching $F \subseteq E(C \cup D)$ s.t. $H \subseteq F$. Otherwise, it is called \mathcal{M}-bad.

Definition (\mathcal{U}-good): Let T be a partition and H a 3-matching in $C \times D$. Then (T, H) is called \mathcal{U}-good $\Longleftrightarrow 0<\frac{1}{1+\epsilon} p_{\mathcal{U}, T}^{e x}(H) \leq p_{\mathcal{U}, T}^{e x}(C) \leq(1+\epsilon) p_{\mathcal{U}, T}^{e x}(H)$. Otherwise, it is called \mathcal{U}-bad.
Definition (Good): If (T, H) is both \mathcal{U}-good and \mathcal{M}-good, we call it just good.
Lemma 7: If (T, H) is \mathcal{M}-good $\Longrightarrow \frac{1}{1+\epsilon} p_{\mathcal{M}, T}(H) \leq p_{\mathcal{M}, T}^{e x}(H) \leq(1+\epsilon) p_{\mathcal{M}, T}(H)$.
Lemma 8: If T is a partition and $F \subseteq C \times D$ is a k-matching, then $\operatorname{Pr}_{H \sim\left({ }_{3}\right)}[(T, H)$ is good $] \leq \frac{100}{k^{2}}$

Figure 1: Visualization of a partition T with all edges $E(T)$.

Figure 2: Visualization of a partition T together with one matching $M \in \mathcal{M}(T)$ and one cut $U \in \mathcal{U}(T)$.

