The Parameterized Complexity of k-Biclique

Bingkai Lin

presented by Eva Jelínková

Definition 1. Let $\Sigma = \{0, 1\}$. A parameterized problem is a pair (Q, κ) consisting of a classical problem $Q \subseteq \Sigma^*$ and a polynomial-time computable parameterization $\kappa : \Sigma^* \to \mathbb{N}$.

An algorithm is an *fpt-algorithm with respect to a parameterization* κ if for every $x \in \Sigma^*$ the running time of the algorithm on x is bounded by $f(\kappa(x)) \cdot |x|^{O(1)}$ for a computable function $f: \mathbb{N} \to \mathbb{N}$.

A parameterized problem is *fixed-parameter tractable* (belongs to he class FPT) if it has an fpt-algorithm.

Let (Q, κ) and (Q', κ') be two parameterized problems. An *fpt-reduction* from (Q, κ) to (Q', κ') is a mapping $R : \Sigma^* \to \Sigma^*$ such that:

- 1. For every $x \in \Sigma^*$ we have $x \in Q$ if and only if $R(x) \in Q'$.
- 2. R is computable by an fpt-algorithm.
- 3. There is a computable function $g : \mathbb{N} \to \mathbb{N}$ such that $\kappa'(R(x)) \leq g(\kappa(x))$ for all $x \in \Sigma^*$.

PARAMETERIZED-BICLIQUE Input: A graph G, an integer kParameter: kQuestion: Is there a subgraph $K_{k,k}$ in G?

Theorem 2. Parameterized-Biclique is W[1]-hard.

Reduction

Theorem 3. For any *n* vertices, graph *G*, and positive integer *k* with $n^{\frac{6}{k+6}} > (k+6)!$ we can compute a graph *G'* in $f(k) \cdot n^{O(1)}$ -time such that *G'* contains a $K_{k',k'}$ if and only if *G* contains a K_k , where $k' = \Theta(k!)$.

Theorem 4. For any *n* vertices, graph *G*, and positive integer *k* with $n \gg k$, we can compute a graph *G'* in $f(k) \cdot n^{O(1)}$ -time such that, with high probability, *G'* contains a K_{k^2,k^2} , if and only if *G* contains a K_k .

Definition 5 ((n, k, l, h)-threshold property). Suppose that $G = (A \cup B, E)$ is a bipartite graph with $A = V_1 \cup V_2 \cup \ldots \cup V_n$ and h > l. We say that G has the (n, k, l, h)-threshold property if it satisfies:

- (T1) Every k + 1 distinct vertices in A have at most l common neighbors in B,
- (T2) For every k distinct indices i_1, i_2, \ldots, i_k there exist $v_{i_1} \in V_{i_1}, \ldots, v_{i_k} \in V_{i_k}$ such that v_{i_1}, \ldots, v_{i_k} have at least h common neighbors in B.

Definition 6 (the "neighborhood" of a vector of vertices). In a bipartite graph $G = (A \cup B, E)$, let us have $\vec{v} = (v_1, \ldots, v_t)$, where $v_1, \ldots, v_t \in A$. We define $N(\vec{v}) = \{u \in B : v_1 u \in E, \ldots, v_t u \in E\}.$

Lemma 7 (reduction). We are given an (n, k, l, h)-threshold bipartite graph of size $f(k) \cdot n^{O(1)}$. Let $s = \binom{k}{2}$. For any n vertices and graph G on n vertices we can construct a new graph $H = (A \cup B, E)$ in $f(k) \cdot n^{O(1)}$ -time such that

(H1) if $K_k \subseteq G$ then $\exists \vec{v} \in \binom{A}{s}$ such that $|N(\vec{v})| \ge h$;

(H2) if $K_k \not\subseteq G$ then $\forall \vec{v} \in \binom{A}{s}$ we have $|N(\vec{v})| \leq l$.

Lemma 8. For $k, n \in \mathbb{N}^+$ with k = 6l - 1 for some $l \in \mathbb{N}^+$ and $\lceil (n+1)^{\frac{6}{k+1}} \rceil > (k+1)!$, the bipartite graph with $(n, k, (k+1)!, \lceil (n+1)^{\frac{6}{k+1}} \rceil)$ -threshold property can be computed in $f(k) \cdot n^{O(1)}$ -time.

Lemma 9. For $t = s^2$ and $n \gg t$ we can compute in $f(k) \cdot n^{O(1)}$ -time a bipartite random graph satisfying the (n, s, t - 1, t)-threshold property almost surely.

Probabilistic Construction

Lemma 10. For any $0 < \alpha < \beta < 1$, $\varepsilon = \frac{1}{s}$, $t = (1 - \alpha)s(1 + s) + 2$ and $N \gg t$, the graph $G_B\left(N, N^{-\frac{(s+1+t+\varepsilon)}{(s+1)t}}\right)$ satisfies the $(N^{1-\beta}, s, t-1, t)$ -threshold property almost surely.

Explicit Construction

Definition 11 (Paley-type Graph). For any prime power $q = p^t$ and $d \mid q - 1$, $G(q, d) := (A \cup B, E)$ is a Paley-type bipartite graph with

- 1. $A = B = GF^{\times}(q)$ (where $GF^{\times}(q)$ is the multiplicative group of GF(q));
- 2. $\forall x \in A, y \in B : xy \in E \text{ if and only if } (x+y)^{\frac{q-1}{d}} = 1.$