The Parameterized Complexity of k-Biclique

Bingkai Lin
presented by Eva Jelínková

Definition 1. Let $\Sigma=\{0,1\}$. A parameterized problem is a pair (Q, κ) consisting of a classical problem $Q \subseteq \Sigma^{*}$ and a polynomial-time computable parameterization $\kappa: \Sigma^{*} \rightarrow \mathbb{N}$.

An algorithm is an fpt-algorithm with respect to a parameterization κ if for every $x \in \Sigma^{*}$ the running time of the algorithm on x is bounded by $f(\kappa(x)) \cdot|x|^{O(1)}$ for a computable function $f: \mathbb{N} \rightarrow \mathbb{N}$.

A parameterized problem is fixed-parameter tractable (belongs to he class FPT) if it has an fpt-algorithm.

Let (Q, κ) and $\left(Q^{\prime}, \kappa^{\prime}\right)$ be two parameterized problems. An fpt-reduction from (Q, κ) to $\left(Q^{\prime}, \kappa^{\prime}\right)$ is a mapping $R: \Sigma^{*} \rightarrow \Sigma^{*}$ such that:

1. For every $x \in \Sigma^{*}$ we have $x \in Q$ if and only if $R(x) \in Q^{\prime}$.
2. R is computable by an fpt-algorithm.
3. There is a computable function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that $\kappa^{\prime}(R(x)) \leq g(\kappa(x))$ for all $x \in \Sigma^{*}$.

Parameterized-Biclique
Input: A graph G, an integer k
Parameter: k
Question: Is there a subgraph $K_{k, k}$ in G ?

Theorem 2. Parameterized-Biclique is W[1]-hard.

Reduction

Theorem 3. For any n vertices, graph G, and positive integer k with $n^{\frac{6}{k+6}}>(k+6)$! we can compute a graph G^{\prime} in $f(k) \cdot n^{O(1)}$-time such that G^{\prime} contains a $K_{k^{\prime}, k^{\prime}}$ if and only if G contains a K_{k}, where $k^{\prime}=\Theta(k!)$.

Theorem 4. For any n vertices, graph G, and positive integer k with $n \gg k$, we can compute a graph G^{\prime} in $f(k) \cdot n^{O(1)}$-time such that, with high probability, G^{\prime} contains a $K_{k^{2}, k^{2}}$, if and only if G contains a K_{k}.

Definition 5 ((n, k, l, h)-threshold property). Suppose that $G=(A \dot{\cup} B, E)$ is a bipartite graph with $A=V_{1} \dot{\cup} V_{2} \dot{\cup} \ldots \dot{\cup} V_{n}$ and $h>l$. We say that G has the (n, k, l, h)-threshold property if it satisfies:
(T1) Every $k+1$ distinct vertices in A have at most l common neighbors in B,
(T2) For every k distinct indices $i_{1}, i_{2}, \ldots, i_{k}$ there exist $v_{i_{1}} \in V_{i_{1}}, \ldots, v_{i_{k}} \in V_{i_{k}}$ such that $v_{i_{1}}, \ldots, v_{i_{k}}$ have at least h common neighbors in B.

Definition 6 (the "neighborhood" of a vector of vertices). In a bipartite graph $G=(A \dot{\cup} B, E)$, let us have $\vec{v}=\left(v_{1}, \ldots, v_{t}\right)$, where $v_{1}, \ldots, v_{t} \in A$. We define $N(\vec{v})=\left\{u \in B: v_{1} u \in E, \ldots, v_{t} u \in E\right\}$.

Lemma 7 (reduction). We are given an (n, k, l, h)-threshold bipartite graph of size $f(k) \cdot n^{O(1)}$. Let $s=\binom{k}{2}$. For any n vertices and graph G on n vertices we can construct a new graph $H=(A \dot{\cup} B, E)$ in $f(k) \cdot n^{O(1)}$-time such that
(H1) if $K_{k} \subseteq G$ then $\exists \vec{v} \in\binom{A}{s}$ such that $|N(\vec{v})| \geq h$;
(H2) if $K_{k} \nsubseteq G$ then $\forall \vec{v} \in\binom{A}{s}$ we have $|N(\vec{v})| \leq l$.
Lemma 8. For $k, n \in \mathbb{N}^{+}$with $k=6 l-1$ for some $l \in \mathbb{N}^{+}$and $\left\lceil(n+1)^{\frac{6}{k+1}}\right\rceil>$ $(k+1)$!, the bipartite graph with $\left(n, k,(k+1)!,\left\lceil(n+1)^{\frac{6}{k+1}}\right\rceil\right)$-threshold property can be computed in $f(k) \cdot n^{O(1)}$-time.

Lemma 9. For $t=s^{2}$ and $n \gg t$ we can compute in $f(k) \cdot n^{O(1)}$-time a bipartite random graph satisfying the ($n, s, t-1, t$)-threshold property almost surely.

Probabilistic Construction

Lemma 10. For any $0<\alpha<\beta<1, \varepsilon=\frac{1}{s}$, $t=(1-\alpha) s(1+s)+2$ and $N \gg t$, the graph $G_{B}\left(N, N^{-\frac{(s+1+t+\varepsilon)}{(s+1) t}}\right)$ satisfies the $\left(N^{1-\beta}, s, t-1, t\right)$-threshold property almost surely.

Explicit Construction

Definition 11 (Paley-type Graph). For any prime power $q=p^{t}$ and $d \mid q-1$, $G(q, d):=(A \dot{\cup} B, E)$ is a Paley-type bipartite graph with

1. $A=B=G F^{\times}(q)$ (where $G F^{\times}(q)$ is the multiplicative group of $G F(q)$);
2. $\forall x \in A, y \in B: x y \in E$ if and only if $(x+y)^{\frac{q-1}{d}}=1$.
