The Cover Number of a Matrix and its Algorithmic Applications

Noga Alon, Troy Lee, and Adi Shraibman
Presented by Pavel Veselý

Let $A \in[-1 ; 1]^{m \times n}$ be a matrix. We consider a quadratic optimization problem where we maximize $p^{T} A q$ over probability distributions p and q subject to linear constraints.

Basic definitions:

- $\Delta^{n}=\left\{p \in[0 ; 1]^{n}:\|p\|_{1}=\sum_{i=1}^{n} p_{i}=1\right\}$ is the set of n-dimensional probability distributions,
- $\operatorname{conv}(A)$ is the convex hull of the columns of A ,
- ε-net for A is the set of vectors $S \subseteq \mathbb{R}^{m}$ such that for all $v \in \operatorname{conv}(A)$ there is a vector $u \in S$ satisfying $\|v-u\|_{\infty} \leq \varepsilon$,
- The cover number $N_{\varepsilon}(A)$ is the minimal size of an ε-net for A.

Approximation framework: Given an efficient enumerator for an ε-net S solve for each $u \in S$ the linear program max $p^{T} u$ over $p \in \Delta_{m}, q \in \Delta_{n}$ subject to original linear constraints and $\|u-A q\|_{\infty} \leq \varepsilon$. This yields a solution which is within 2ε of the optimal.

Application: Approximate Nash equilibria

In a 2-player game let $A, B \in[-1 ; 1]^{m \times n}$ be payoff matrices for Alice and Bob respectively, i.e., $A_{i, j}$ is payoff for Alice when she plays strategy i and Bob plays strategy j. Let $p \in \Delta_{m}, q \in \Delta_{n}$ be mixed strategies for Alice and Bob respectively. The pair of strategies p, q is a Nash equilibrium (NE) if it satisfies

$$
\begin{array}{ll}
p^{T} A q \geq e_{i}^{T} A q & \forall i \in[m]=\{1, \ldots, m\} \\
p^{T} A q \geq p^{T} A e_{j} & \forall j \in[n]=\{1, \ldots, n\},
\end{array}
$$

i.e., neither Alice, nor Bob can improve his or her payoff by changing the mixed strategy to a different pure strategy (assuming that the other one stick to his or her strategy). The ε-Nash equilibrium is similar to NE, but they can improve by at most ε.

Theorem 1. Using a deterministic (or Las Vegas randomized) algorithm for enumerating $\varepsilon / 2$-net for $A+B$ (running in time t) we can find an ε-Nash equilibrium in time $t \cdot \operatorname{poly}(m n)$.

Upper bounds on the cover number

Quasi-polynomial upper bound

Theorem 2. Let $A \in[-1 ; 1]^{m \times n}$ be a matrix. Then $N_{\varepsilon}(A) \leq\binom{ n+k}{k}<n^{k}$ where $k=$ $2 \ln (2 m) / \varepsilon^{2}$.

Upper bound using VC dimension

Definition. Let $A \in \mathbb{R}^{m \times n}$ be a matrix. Let $C=\left\{c_{1}, \ldots, c_{k}\right\} \subseteq[n]$ be a subset of columns of A. We say that A shatters C if there are real numbers $\left(t_{c_{1}}, \ldots, t_{c_{k}}\right)$ such that for any $D \subseteq C$ there is a row i with $A_{i, c}<t_{c}$ for all $c \in D$ and $A_{i, c}>t_{c}$ for all $c \in C \backslash D$.

Let $\operatorname{VC}(A)$ be the maximal size of a set of columns shattered by A (Vapnik-Chervonenkis dimension or pseudo-dimension).

Theorem 3. Let $A \in[-1 ; 1]^{m \times n}$ be a matrix with $\mathrm{VC}(A)=d$. Then

$$
N_{\varepsilon}(A) \leq n^{\mathcal{O}\left(d / \varepsilon^{2}\right)}
$$

Lower bounds on the cover number

Lemma 4. Let $A \in\{-1 ; 1\}^{m \times n}$ be a sign matrix and \mathcal{F} be a family of subsets of $[n]$ such that for every distinct $F, F^{\prime} \in \mathcal{F}$

1. the columns of A in $F \cup F^{\prime}$ are shattered,
2. $\left|F \cap F^{\prime}\right| \leq(1-\delta)|F|$.

Then $N_{\delta}(A) \geq|\mathcal{F}|$.
Theorem 5. Let $A \in\{-1 ; 1\}^{m \times n}$ be a sign matrix. Then $N_{1 / 4}(A) \geq 2^{\Omega(\operatorname{VC}(A))}$.
Theorem 6. For almost all sign matrices $A \in\{-1 ; 1\}^{n \times n}$ it holds that $N_{0.99}(A) \geq n^{\Omega(\log n)}$.

