The Cover Number of a Matrix and its Algorithmic Applications

Noga Alon, Troy Lee, and Adi Shraibman

Presented by Pavel Veselý

Let $A \in [-1; 1]^{m \times n}$ be a matrix. We consider a quadratic optimization problem where we maximize $p^T A q$ over probability distributions p and q subject to linear constraints.

Basic definitions:

- $\Delta^n = \{p \in [0;1]^n : \|p\|_1 = \sum_{i=1}^n p_i = 1\}$ is the set of *n*-dimensional probability distributions,
- $\operatorname{conv}(A)$ is the convex hull of the columns of A,
- ε -net for A is the set of vectors $S \subseteq \mathbb{R}^m$ such that for all $v \in \operatorname{conv}(A)$ there is a vector $u \in S$ satisfying $||v u||_{\infty} \leq \varepsilon$,
- The cover number $N_{\varepsilon}(A)$ is the minimal size of an ε -net for A.

Approximation framework: Given an efficient enumerator for an ε -net S solve for each $u \in S$ the linear program max $p^T u$ over $p \in \Delta_m, q \in \Delta_n$ subject to original linear constraints and $||u - Aq||_{\infty} \leq \varepsilon$. This yields a solution which is within 2ε of the optimal.

Application: Approximate Nash equilibria

In a 2-player game let $A, B \in [-1; 1]^{m \times n}$ be payoff matrices for Alice and Bob respectively, i.e., $A_{i,j}$ is payoff for Alice when she plays strategy *i* and Bob plays strategy *j*. Let $p \in \Delta_m, q \in \Delta_n$ be mixed strategies for Alice and Bob respectively. The pair of strategies p, q is a Nash equilibrium (NE) if it satisfies

$$p^{T}Aq \ge e_{i}^{T}Aq \quad \forall i \in [m] = \{1, \dots, m\}$$
$$p^{T}Aq \ge p^{T}Ae_{j} \quad \forall j \in [n] = \{1, \dots, n\},$$

i.e., neither Alice, nor Bob can improve his or her payoff by changing the mixed strategy to a different pure strategy (assuming that the other one stick to his or her strategy). The ε -Nash equilibrium is similar to NE, but they can improve by at most ε .

Theorem 1. Using a deterministic (or Las Vegas randomized) algorithm for enumerating $\varepsilon/2$ -net for A + B (running in time t) we can find an ε -Nash equilibrium in time t \cdot poly(mn).

Upper bounds on the cover number

Quasi-polynomial upper bound

Theorem 2. Let $A \in [-1;1]^{m \times n}$ be a matrix. Then $N_{\varepsilon}(A) \leq \binom{n+k}{k} < n^k$ where $k = 2\ln(2m)/\varepsilon^2$.

Upper bound using VC dimension

Definition. Let $A \in \mathbb{R}^{m \times n}$ be a matrix. Let $C = \{c_1, \ldots, c_k\} \subseteq [n]$ be a subset of columns of A. We say that A shatters C if there are real numbers $(t_{c_1}, \ldots, t_{c_k})$ such that for any $D \subseteq C$ there is a row i with $A_{i,c} < t_c$ for all $c \in D$ and $A_{i,c} > t_c$ for all $c \in C \setminus D$.

Let VC(A) be the maximal size of a set of columns shattered by A (Vapnik–Chervonenkis dimension or pseudo-dimension).

Theorem 3. Let $A \in [-1; 1]^{m \times n}$ be a matrix with VC(A) = d. Then

$$N_{\varepsilon}(A) \le n^{\mathcal{O}(d/\varepsilon^2)}.$$

Lower bounds on the cover number

Lemma 4. Let $A \in \{-1, 1\}^{m \times n}$ be a sign matrix and \mathcal{F} be a family of subsets of [n] such that for every distinct $F, F' \in \mathcal{F}$

1. the columns of A in $F \cup F'$ are shattened, 2. $|F \cap F'| \le (1 - \delta)|F|$. Then $N_{\delta}(A) \ge |\mathcal{F}|$.

Theorem 5. Let $A \in \{-1, 1\}^{m \times n}$ be a sign matrix. Then $N_{1/4}(A) \ge 2^{\Omega(\operatorname{VC}(A))}$.

Theorem 6. For almost all sign matrices $A \in \{-1, 1\}^{n \times n}$ it holds that $N_{0.99}(A) \ge n^{\Omega(\log n)}$.