Rounding Semidefinite Programming
 Hierarchies via Global Correlation

Boaz Barak, Prasad Raghavendra, David Steurer
Presented by Martin Böhm
Combinatorics and Graph Theory PhD Seminar, 2014, MFF UK

Lasserre Hierarchy

Notation: Let $\mathcal{P}_{t}([n]):=\{I \subseteq[n]| | I \mid \leq t\}$ be the set of all index sets of cardinality at most t and let $y \in \mathbb{R}^{\mathcal{P}_{2 t+2}([n])}$ be a vector with entries y_{I} for all $I \subseteq[n]$ with $|I| \leq 2 t+2$.
D (Moment matrix): $M_{t+1}(y) \in \mathbb{R}^{\mathcal{P}_{t+1}([n])} \times \mathcal{P}_{t+1}([n]):$

$$
\left.M_{t+1}(y)\right)_{I, J}:=y_{I \cup J} \quad \forall|I|,|J| \leq t+1 .
$$

\mathbf{D} (Moment matrix of slacks): For the ℓ-th $(\ell \in[m])$ constraint of the LP $A^{T} x \geq b$, we create $M_{t}^{\ell}(y) \in \mathbb{R}^{\mathcal{P}_{t}([n]) \times \mathcal{P}_{t}([n])}$:

$$
M_{t}^{\ell}(y)_{I, J}:=\left(\sum_{i=1}^{n} A_{l i} y_{I \cup J \cup\{i\}}\right)-b_{l} y_{I \cup J}
$$

$\mathbf{D}\left(t\right.$-th level of the Lasserre hierarchy): Let $K=\left\{x \in \mathbb{R}^{n} \mid A x \geq b\right\}$. Then $\operatorname{LaS}_{t}(K)$ is the set of vectors $y \in \mathbb{R}^{\mathcal{P}_{2 t+2}([n])}$ that satisfy

$$
M_{t+1}(y) \succeq 0 ; \quad M_{t}^{\ell}(y) \succeq 0 \quad \forall \ell \in[m] ; \quad y_{\emptyset}=1
$$

Furthermore, let $\operatorname{LAS}_{t}^{\text {proj }}:=\left\{\left(y_{\{1\}}, \ldots, y_{\{n\}}\right) \mid y \in \operatorname{LAS}_{t}(K)\right\}$ be the projection on the original variables.
Intuition: $M_{t+1}(y) \succeq 0$ ensures consistency (y behaves locally as a distribution) while $\bar{M}_{t}^{\ell}(y) \succeq 0$ guarantees that y satisfies the l-th linear constraint.
\mathbf{T} (Lasserre properties from Martin K's lecture): Let $K=\left\{x \in \mathbb{R}^{n} \mid\right.$ $A x \geq b\}$ and $y \in \operatorname{Las}_{t}(K)$. Then the following holds:
(a) $\operatorname{conv}\left(K \cap\{0,1\}^{n}\right)=\operatorname{LAS}_{n}^{\text {proj }}(K) \subseteq \ldots \subseteq \operatorname{LAS}_{0}^{\text {proj }}(K) \subseteq K$
(b) We have $0 \leq y_{I} \leq y_{J} \leq 1$ for all $I \supseteq J$ with $0 \leq|J| \leq|I| \leq t$.
(c) Let $I \subseteq[n]$ with $|I| \leq t$. Then

$$
K \cap\left\{x \in \mathbb{R}^{n} \mid x_{i}=1 \forall i \in I\right\}=\emptyset \Longrightarrow y_{I}=0
$$

(d) Let $I \subseteq[n]$ with $|I| \leq t$. Then

$$
y \in \operatorname{conv}\left(\left\{z \in \operatorname{LaS}_{t-|I|}(K) \mid z_{\{i\}} \in\{0,1\} \forall i \in I\right\}\right) .
$$

(e) Let $S \subseteq[n]$ be a subset of variables such that not many can be equal to 1 at the same time:

$$
\max \left\{|I|: I \subseteq S ; x \in K ; x_{i}=1 \forall i \in I\right\} \leq k<t
$$

Then we have

$$
y \in \operatorname{conv}\left(\left\{z \in \operatorname{LAS}_{t-k}(K) \mid z_{\{i\}} \in\{0,1\} \forall i \in S\right\}\right)
$$

(f) For any $|I| \leq t$ we have $y_{I}=1 \Leftrightarrow \bigwedge_{i \in I}\left(y_{\{i\}}=1\right)$.
(g) For $|I| \leq t:\left(\forall i \in I: y_{\{i\}} \in\{0,1\}\right) \Longrightarrow y_{I}=\prod_{i \in I} y_{\{i\}}$.
(h) Let $|I|,|J| \leq t$ and $y_{I}=1$. Then $y_{I \cup J}=y_{J}$.

Vector representation: For each event $\bigcap_{i \in I}\left(x_{i}=1\right)$ with $|I| \leq t$ there is a vector v_{I} representing it in a consistent way:
$\mathbf{L}\left(\right.$ Vector Representation Lemma): Let $y \in \operatorname{LaS}_{t}(K)$. Then there is a family of vectors $\left(\mathbf{v}_{I}\right)_{|I| \leq t}$ such that $\left\langle\mathbf{v}_{I}, \mathbf{v}_{J}\right\rangle=y_{I \cup J}$ for all $|I|,|J| \leq t$. In particular $\left\|\mathbf{v}_{I}\right\|_{2}^{2}=y_{I}$ and $\left\|\mathbf{v}_{\emptyset}\right\|_{2}^{2}=1$.

From vectors to distributions

Binary setting

Solution in $x \in \operatorname{conv}\left(K \cap\{0,1\}^{n}\right) \rightarrow$ a probability distribution over integral solutions in K. For t-round Lasserre we cannot have a globally feasible probability distribution, but instead one that is locally consistent.
L:Let $y \in \operatorname{Las}_{t}(K)$. Then for any subset $S \subseteq[n]$ of size $|S| \leq t$ there is a distribution \mathcal{D}^{S} over $0,1^{S}$ such that

$$
\operatorname{Pr}_{z \sim \mathcal{D}^{S}}\left[\bigwedge_{i \in I}\left(z_{i}=1\right)\right]=y_{I} \forall I \subseteq S
$$

General 2CSP setting

All 2CSP problems can be restated using SDPs with constraints hidden in the maximization clause, so we do not depend on the moment matrices.
D: Let $V=[n]$ be a set of vertices and $[k]$ the set of possible values. An m-local distribution is a distribution \mathcal{D}^{T} over the set of assignments $[k]^{T}$ of the vertices of some set $T \subseteq V$ of size at most $m+2$. The choice +2 is for convenience.
D: A collection $\left\{\mathcal{D}^{T}|T \subseteq V,|T| \leq m+2\}\right.$ of m-local distributions is consistent if all pairs of distributions $\mathcal{D}^{T}, \mathcal{D}^{T^{\prime}}$ are consistent on their intersection $T \cap T^{\prime}$. By this we mean that any event defined on $T \cap T^{\prime}$ has the same probability in \mathcal{D}^{T} and in $\mathcal{D}^{T^{\prime}}$
Notation trick: If we have n vertices and $|T| \leq m$, instead of the entire collection $\left\{\mathcal{D}^{T}|T \subseteq V,|T| \leq m+2\}\right.$ we talk instead about a set of m-local random variables $X_{1}, X_{2}, \ldots, X_{n}$. We can think of those random variables as variables X_{i} coming from the distribution $\mathcal{D}^{\{i\}}$. Note that these variables are not jointly distributed random variables, but for each subset of at most $m+2$ of them, one can find a sample space \mathcal{D}^{T} where the corresponding variables X_{i}^{T} are jointly distributed.

More notation.

- $\left\{X_{i} \mid X_{S}\right\} \equiv$ a random variable obtained by conditioning $X_{i}^{S \cup i}$ on variables $\left\{X_{j}^{(S \cup\{i\})} \mid j \in S\right\}$;
- $P\left[X_{i}=X_{j} \mid X_{S}\right] \equiv P\left[X_{i}^{S \cup i \cup j}=X_{j}^{S \cup i \cup j} \mid X_{S}^{S \cup i \cup j}\right]$.
\mathbf{D} (Lasserre hierarchy in the prob. setting):
An m-round Lasserre solution of a 2CSP problem consists of m-local random variables $X_{1}, X_{2}, \ldots, X_{n}$ and vectors $v_{S, \alpha}$ for all $S \subseteq\binom{V}{m+2}$ and all local assignments $\alpha \in[k]^{S}$, if the following holds $\forall S, T \subseteq$ $V,|S \cup T| \leq m+2, \forall \alpha \in[k]^{S}, \beta \in[k]^{T}:$

$$
\left\langle v_{S, \alpha}, v_{T, \beta}\right\rangle=P\left[X_{S}=\alpha, X_{T}=\beta\right]
$$

We usually want a solution for MAx 2CSP, so we add a maximization clause, for instance $\max P_{(i, j, \Pi) \in \mathcal{I}}\left[\left(x_{i}, x_{j} \in \Pi\right)\right]$.
O:A covariance matrix $E\left[(X-E[X])(X-E[X])^{T}\right]$ is always positive semidefinite for a random vector X.
C:For a fixed local assignment $x_{S} \in[k]^{S}$ (where $|S| \leq m$) and fixed a, b, it holds that the matrix $\left(\operatorname{Cov}\left(X_{i a}, X_{j b} \mid X_{S}=x_{S}\right)\right)_{i, j \in V}$ is positive semidefinite for the m-th level of the Lasserre hierarchy.

Main results

D: The τ-threshold rank of a regular graph G, denoted $\operatorname{rank}_{\geq_{\tau}}(G)$, is the number of eigenvalues of the normalized adjacency matrix of G that are larger than τ. We can define this for any Max 2-CsP problem, by taking the adjacency graph of the predicates.
T: There is a constant c such that for every $\varepsilon>0$, and every Max 2-CsP instance \mathcal{I} with objective value v and alphabet size k, the following holds:
The objective value $\operatorname{sdpopt}(\mathcal{I})$ of the r-round Lasserre hierarchy for $r \geq k \cdot \operatorname{rank}_{\geq \tau}(\mathcal{I}) / \varepsilon^{c}$ is within ϵ of the objective value v of \mathcal{I}, i.e., $\operatorname{sdpopt}(\mathcal{I}) \leq v+\varepsilon$.

Moreover, there exists a polynomial time rounding scheme that finds an assignment x satisfying $\operatorname{val}_{\mathcal{I}}(x)>v-\varepsilon$ given optimal SDP solution as input.

T: There is an algorithm, based on rounding r rounds of the Lasserre hierarchy and a constant c, such that for every $\varepsilon>0$ and input instance \mathcal{I} of Unique Games with objective value v, alphabet size k, satisfying $\operatorname{rank}_{>_{\tau}}(\mathcal{I}) \leq \varepsilon^{c} r / k$, where $\tau=\varepsilon^{c}$, the algorithm outputs an assignment x satisfying $\operatorname{val}_{\mathcal{I}}(x)>v-\varepsilon$.

T: There is an algorithm, based on rounding r rounds of the Lasserre hierarchy and a constant c, such that for every $\varepsilon>0$ and input Unique Games instance \mathcal{I} with objective value $1-\varepsilon$ and alphabet size k, satisfying $r \geq c k \cdot \min \left\{n^{c \varepsilon^{1 / 3}}, \operatorname{rank}_{\geq 1-c \varepsilon}(\mathcal{I})\right\}$, the algorithm outputs an assignment x satisfying $\operatorname{val}_{\mathcal{I}}(x)>1 / 2$.

A sample 2CSP: MaxCut

D:SDP relaxation of MaxCut:
$\operatorname{maximize} \underset{i, j \in E}{\mathbb{E}}\left\|v_{i}-v_{j}\right\|^{2}$ subject to $\|v\|_{i}^{2}=1 \forall i \in V$.

Step 1. Use an m-round Lasserre to get a collection of m-local variables $X_{1}, X_{2}, \ldots, X_{n}$. For an edge $i j$, its contribution to the SDP objective is:

$$
\underset{\mathcal{D}^{i j}}{\mathbb{P}_{i j}}\left[X_{i} \neq X_{j}\right]=\left\|v_{i}-v_{j}\right\|^{2}
$$

Step 2. Our goal is sampling that is close to sampling $\mathcal{D}^{i j}$. Try first independent sampling from marginals \mathcal{D}^{i}.
\mathbf{O} (Local correlation): On an edge (i, j), the local distribution $\mathcal{D}^{i j}$ is far from the independent sampling distribution $\mathcal{D}^{i} \times \mathcal{D}^{j}$ only if the random variables X_{i}, X_{j} are correlated.
\mathbf{O} (Correlation helps): If two variables X_{i}, X_{j} are correlated, then sampling/fixing the value of X_{i} reduces the uncertainty in the value of X_{j}. More precisely:

Step 3. Assume that average local correlation is at least ε, that is

$$
\underset{i j \sim G}{\mathbb{E}}\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle \geq \varepsilon
$$

Use PSD of correlations, apply the following Lemma for vectors $v_{i} \equiv u_{i}^{\otimes 2}$:
L(Local Correlation vs. Global Correlation on Low-Rank Graphs) Let $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ be vectors in the unit ball. Suppose that the vectors are correlated across the edges of a regular n-vertex graph G,

$$
\underset{i j \sim G}{\mathbb{E}}\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle \geq \rho .
$$

Then, the global correlation of the vectors is lower bounded by

$$
\underset{i, j \in V}{\mathbb{E}}\left|\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle\right| \geq \Omega(\rho) / \mathrm{rank}_{\geq \Omega(\rho)}(G)
$$

where $\operatorname{rank}_{>\rho}(G)$ is the number of eigenvalues of adjacency matrix of G that are larger than ρ.
Step 4. If the independent sampling is at least ε-far from correlated sampling over the edges, we can use the previous Lemma and reduce the average variance. Therefore, after $\operatorname{rank}_{\geq \varepsilon^{2}}(G) / \varepsilon^{2}$ steps, we are done.

