Conjectures

Conj (Dean). In every tournament there exists a vertex v, such that $|N^{++}(v)| \ge |N^{+}(v)|$.

Conj (Seymour). In every **digraph** there exists a vertex v, such that $|N^{++}(v)| \ge |N^{+}(v)|$.

Conj (Summers). For n > 1, every tournament of order 2n - 2 contains every oriented tree of order n.

Definitions

Definition 1. Let T = (V, E) be a tournament and L = (V, E') be a total order on V. Denote by $T \cap L$ the acyclic directed graph $(V, E \cap E')$. An order L of T which maximizes the number of arcs of $T \cap L$ is a *median order of* T.

Feedback Property for every i, j with $1 \le i \le j \le n$: outdegree of x_i and indegree of x_j in $(T \cap L)_{|[x_i, x_j]}$ are at least (j - i)/2

Definition 2. A *local median order* of T is an order of T which satisfies the feedback property.

Inductive tool if I is an interval of a (local) median order L of T, then $L_{|I|}$ is a (local) median order of $T_{|I}$. Vertex v of a tournament T is

feed vertex if there exists a local median order L of T such that v is maximal in L

back vertex if there exists a local median order L of T such that v is minimal in L

dominating if $d^{-}(v) = 0$

dominated if $d^+(v) = 0$

king if $\{v\} \cup N^+(v) \cup N^{++}(v) = V(T)$

Definition 3. Let $L = (x_1, \ldots, x_n)$ be a local median order of a tournament T. We distinguish two types of vertices of $N^-(x_n)$: a vertex $x_j \in N^-(x_n)$ is good if there exists $x_i \in N^+(x_n)$, with i < j such that $x_i \to x_j$; otherwise x_j is bad. We denote the set of good vertices of (T, L) by G_L .

Definition 4. Let $L = (x_1, \ldots, x_n)$ be a local median order of a tournament *T*. A *sedimentation* of a median order *L* is denoted by Sed(L).

- If $|N^+(x_n)| < |G_L|$, then Sed(L) = L.
- If $|N^+(x_n)| = |G_L|$, we denote by b_1, \ldots, b_k the bad vertices of (T, L) and by v_1, \ldots, v_{n-1-k} the vertices of $N^+(x_n) \cup G_L$, both enumerated in increasing order with respect to their index in L. In this case, $Sed(L) = (b_1, \ldots, b_k, x_n, v_1, \ldots, v_{n-1-k})$.

Definition 5. A rooted tree with all edges oriented towards the root is called *arborescence*.

Definition 6. An embedding of an arborescence A into a tournament T is an injective mapping $f: V(A) \to V(T)$ such that $f(x) \to f(y)$ whenever $x \to y$.

Definition 7. A directed graph D is *m*-unavoidable if for every tournament T of order m, there exists an embedding of D into T.

Definition 8. An embedding of A into T is an L-up-embedding if $|N_L^+(x) \cap f(A)| \le |N_L^+(x) \setminus f(A)| + 1$.

Definition 9. A tree A is *m*-well-up-embeddable if for every tournament of order m and every local median order L A is L-up-embeddable.

Warm up

Proposition 1. Every tournament has a king. Moreover, a tournament with no dominating vertex has at least three kings.

Theorem 1. Every feed vertex of a tournament has a large second neighbourhood.

First Theorems

Lemma 1. The order Sed(L) is a median order of T.

Theorem 2. A tournament with no dominated vertex has at lest two vertices with large second neighbourhood.

And Beyond

Theorem 3. Every arborescence of order n > 1 in (2n - 2)-unavoidable.

Theorem 4. Every tree of order n > 1 is (4n - 6)-unavoidable.

Theorem 5. Every tree of order n > 0 is $\left(\frac{7n-5}{2}\right)$ -unavoidable.