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Positive semidefiniteness
D:A symmetric matrix M ∈ Rn×n is positive semidefinite (PSD)
≡ ∀z ∈ Rn : zTMz ≥ 0. We write M � 0. Equivalently:

• M is PSD iff there exists U such that UTU = M .
• M is PSD iff any principal submatrix U of M has det(U) ≥ 0

(a submatrix U is principal iff we get it by removing a subset of
rows and the same subset of columns).

Graph Partitioning / Labeling Problems
Generally, we deal with problems of assigning each vertex a label
i ∈ [k] = {1, 2, . . . k} (i.e., cut the graph into k parts). We can formu-
late the problem as a quadratic integer program (QIP) which has a
binary variable xu(i) for each vertex u and each label i.

D(Quadratic Integer Program with PSD costs): Given a PSD
matrix L ∈ R(V×[k])×(V×[k]), consider the problem of finding x ∈
{0, 1}V×[k] minimizing xTLx subject to:

1. exactly one of {xu(i)}i∈[k] equals 1 for each u and
2. some linear constraints Ax ≥ b.

Result: In time nO(r/ε2) we find such an x with

xTLx ≤
1 + ε

min{1, λr(L)}
OPT

where L = diag(L)−1/2 · L · diag(L)−1/2 is a normalization of L and
diag(L) is the diagonal of L and λr(L) is the r-th smallest eigenvalue
of L.

For the purpose of this talk, we consider only the Minimum Bisection
problem on d-regular unweighted graphs, but a similar algorithm and
analysis can be done for any such QIP with PSD costs.

D(Minimum Bisection):

Input: undirected d-regular graph G = (V,E)

Goal: Find U ⊂ V with |U | = µ that minimizes |Γ(U)| (where Γ(U)
is the set of edges with exactly one endpoint in U).

Big Picture
For our QIP with PSD costs we do the following:

1. relax QIP to the r′-th level of Lasserre SDP hierarchy,

2. solve the resulting SDP in nO(r′) (with an additive error ε0),
3. randomly round the optimal solution of SDP to an integer so-

lution.

Lasserre Hierarchy
Intuition: Take a polytope K = {x ∈ Rn|Ax ≥ b} such that
KI := conv(K ∩ {0, 1})n precisely corresponds to solutions of a
given problem. Then every point x ∈ KI corresponds to a probabil-
ity distribution of valid solutions, since it is a convex combination
of integral vertices of KI . The problem is that in general K 6= KI , so
x ∈ K may not correspond to a distribution of valid solutions.

What is wrong with x ∈ K \ KI? It only gives us valid marginal
probabilities, but it might not satisfy e.g. P[Xi = Xj = 1] ∈
[max{xi + xj − 1, 0},min{xi, xj}] for i 6= j. What about introducing
variables for every I ⊆ [n], |I| = 2? By adding appropriate constraints
we can force any vector x to be a convex combination of some vec-
tors integral on 2 coordinates. That would ensure the solution to be
sensible w.r.t. second moments. Now generalize to higher moments. . .

Notation: Let Pr([n]) := {I ⊆ [n] | |I| ≤ r} be the set of all index
sets of cardinality at most r and let y ∈ RP2r+2([n]) be a vector with
entries yI for all I ⊆ [n] with |I| ≤ 2r + 2. Intuitively y{i} represents
the original variable xi and the new variables yI represent

∏
i∈I xi.

D(Moment matrix): Mr+1(y) ∈ RPr+1([n])×Pr+1([n]):

Mr+1(y))I,J := yI∪J ∀|I|, |J | ≤ r + 1.

D(Moment matrix of slacks): For the `-th (` ∈ [m]) constraint of the
LP AT x ≥ b, we create M`

r(y) ∈ RPr([n])×Pr([n]):

M`
r(y)I,J := (

n∑
i=1

A`iyI∪J∪{i})− b`yI∪J

D(r-th level of the Lasserre hierarchy): Let K = {x ∈ Rn | Ax ≥ b}.
Then Lasr(K) is the set of vectors y ∈ RP2r+2([n]) that satisfy

Mr+1(y) � 0; M`
r(y) � 0 ∀` ∈ [m]; y∅ = 1.

Furthermore, let Lasproj
r := {(y{1}, . . . , y{n}) | y ∈ Lasr(K)} be the

projection on the original variables.

Intuition: Mr+1(y) � 0 ensures consistency (y behaves locally as
a distribution) while M`

r(y) � 0 guarantees that y satisfies the `-th
linear constraint.

T(Lasserre properties): Let K = {x ∈ Rn | Ax ≥ b} and y ∈
Lasr(K). Then the following holds:

(a) conv(K ∩ {0, 1}n) = Lasproj
n (K) ⊆ . . . ⊆ Lasproj

0 (K) ⊆ K.

(b) We have 0 ≤ yI ≤ yJ ≤ 1 for all I ⊇ J with 0 ≤ |J | ≤ |I| ≤ r.

(c) Let I ⊆ [n] with |I| ≤ r. Then

K ∩ {x ∈ Rn | xi = 1 ∀i ∈ I} = ∅ =⇒ yI = 0.

(d) Let I ⊆ [n] with |I| ≤ r. Then

y ∈ conv({z ∈ Lasr−|I|(K) | z{i} ∈ {0, 1} ∀i ∈ I}).

Vector representation: For each event
⋂
i∈I(xi = 1) with |I| ≤ r

there is a vector xI representing it in a consistent way:

L(Vector Representation Lemma):Let y ∈ Lasr(K). Then there
is a family of vectors (xI)|I|≤r such that 〈xI ,xJ 〉 = yI∪J for all

|I|, |J | ≤ r. In particular ‖xI‖22 = yI and ‖x∅‖22 = 1.

Lasserre for Labeling
In QIP for a graph labeling problem we have a binary variable for each
vertex v and each labeling of v. In its Lasserre hierarchy relaxation
instead of having a variable for each (small) subset of original vari-
ables it makes more sense to have a variable for each (small) subset S
of vertices and each labeling f of S, denoted by xS(f). Furthermore,
we will work in the vector representation of SDPs, i.e., xS(f) ∈ RY
is a vector (in some dimension Y ).

Notation: We use xu(i) for singletons u ∈ V and i ∈ [k]. For f ∈ [k]S

and v ∈ S, let f(v) be the label that v receives from f . For sets S
with labeling f ∈ [k]S and T with labeling g ∈ [k]T such that f and g
agree on S ∩T , we use f ◦ g to denote the labeling of S ∪T consistent
with f and g.

D:Given a set V of variables, a set [k] of labels and r ≥ 0, a set of
vectors x is said to satisfy the r-level of the Lasserre hierarchy on k
labels, denoted by

x ∈ LabelLasr(V × [k])

if it satisfies the following conditions:

1. For each S ∈
( V
≤r+1

)
and f ∈ [k]S there is a vector xS(f) ∈ RY .

2. ‖x∅‖2 = 1.
3. 〈xS(f),xT (g)〉 = 0 if there exists u ∈ S ∩ T s.t. f(u) 6= g(u).
4. 〈xS(f),xT (g)〉 = 〈xS′ (f ′),xT ′ (g′)〉 if S ∪ T = S′ ∪ T ′ and
f ◦ g = f ′ ◦ g′.

5. For any u ∈ V ,
∑
j∈[k] ‖xu(j)‖2 = 1.

6. For any S ∈
( V
≤r+1

)
, u ∈ S and f ∈ [k]S\{u} it holds∑

j∈[k] xS(f ◦ j) = xS\{u}(f).

We say that x ∈ LabelLasr(V × [k]) satisfies m linear constraints
Ax ≥ b where A ∈ R(V×[k])×m if the following holds for all ` ∈ [m],

all subsets S ∈
( V
≤r
)

and all f ∈ [k]S :∑
u∈V,j∈[k]

〈xS(f),xu(j)〉A`,(u,j) ≥ b`‖xS(f)‖2 .

Approximating Minimum Bisection
For simplicity we assume that the graph is d-regular and unweighted.
We relax the following QIP with k = 2:

min
∑
{u,v}∈E(xu(1)− xv(1))2

s.t.
∑
u xu(1) = µ, ∀u : xu(1) + xu(2) = 1, x ∈ {0, 1}V×[2]

The corresponding Lasserre relaxation on level r′: find a vector set
x ∈ LabelLasr′ (V × [2]) minimizing∑

{u,v}∈E
‖xu(1)− xv(1)‖2 (1)

subject to

∀S ∈
( V

≤ r′
)
∀f ∈ [k]S :

∑
u

〈xS(f),xu(1)〉 = µ‖xS(f)‖2



D:If A is adjacency matrix of a graph, the Laplacian matrix is
L := D − A where D is a diagonal matrix with degrees on diago-
nal. The normalized Laplacian matrix is L := D−1/2LD−1/2. Both
L and L are PSD.

T:For any r ≥ 1 and ε > 0 there exists r′ = O(r/ε2) such that given
x ∈ LabelLasr′ (V × [2]) satisfying linear constraints

∑
u xu(1) = µ

and with objective value OPT , we can find in randomized nO(1) time
a set U ⊂ V satisfying with high probability:

1. |Γ(U)| ≤ 1+ε
min{1,λr}

OPT where λr is the r-th smallest eigen-

value of L,
2. µ−O(

√
µ log(1/ε)) ≤ |U | ≤ µ+O(

√
µ log(1/ε))

Randomized Rounding
1. Fix a set S of r′ vertices (to be chosen later).
2. Choose randomly a labeling f ∈ [2]S with probability ‖xS(f)‖2.
3. Independently for all u ∈ V choose i ∈ [2] and assign xu(i)← 1

with probability

Pr[xu(i) = 1] =
‖xS∪{u}(f ◦ i)‖2

‖xS(f)‖2

.
4. Return U = {u | xu(1) = 1}.

For convenience we use traces in the analysis:

D:Trace of a matrix M is the sum of elements on the main diag-
onal, i.e., tr(M) :=

∑n
i=0 Mi,i. For matrices A,B it holds that

tr(ATB) =
∑
i,j Ai,jBi,j .

Let X ∈ RY×V be the matrix with columns corresponding to vectors
xu(1) for all u ∈ V . Then the objective value in Equation 1 can be
rewritten as tr(XTXL) where L is the Laplacian matrix.

We also use projections on span of some vectors from the solution:

D:For a subset S ∈
( V
≤r′
)

we use the projection operator ΠS ∈
RY×Y that projects vectors on the span({xS(f)}f∈[2]S ), i.e., ΠS :=∑
f∈[2]S xS(f) · xS(f)

T
where xS(f) is a unit vector in the direction

of xS(f) if xS(f) is non-zero; otherwise xS(f) = 0. Let Π⊥S := I−ΠS
be the orthogonal projection to ΠS .

D:Let PS be the projection operator on span({xv(j)}v∈S,j∈[2]), i.e.,

PS :=
∑
v∈S,j∈[2] xv(j) ·xv(j)

T
, and let P⊥S := I−PS be the orthog-

onal projection.

D:Finally, let XΠ
S be the projection operator on span of subset S of

columns ofX, i.e. span({xv(1)}v∈S) andXΠ
S :=

∑
v∈S xv(1)·xv(1)

T
.

Let X⊥S := I −XΠ
S be the orthogonal projection.
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Appendix
T(Other Lasserre properties): Let K = {x ∈ Rn | Ax ≥ b} and
y ∈ Lasr(K). Then the following holds:

(a) Let S ⊆ [n] be a subset of variables such that not many can be
equal to 1 at the same time:

max{|I| : I ⊆ S;x ∈ K;xi = 1 ∀i ∈ I} ≤ k < r.

Then we have

y ∈ conv({z ∈ Lasr−k(K) | z{i} ∈ {0, 1} ∀i ∈ S}).

(b) For any |I| ≤ r we have yI = 1⇔
∧
i∈I(y{i} = 1).

(c) For |I| ≤ r: (∀i ∈ I : y{i} ∈ {0, 1}) =⇒ yI =
∏
i∈I y{i}.

(d) Let |I|, |J | ≤ r and yI = 1. Then yI∪J = yJ .

Remark: Property (a) is very strong and does not hold for the
Sherali-Adams or Lovász-Schrijver hierarchy. For example, it implies
that after t = O( 1

ε
) rounds, the integrality gap for the Knapsack

polytope is bounded by 1 + ε (taking S as all items that have profit
at least ε · OPT ). Another example is that the Independent Set
polytope {x ∈ RV+ | xu + xv ≤ 1 ∀{u, v} ∈ E} describes the integral
hull after α(G) rounds of Lasserre.
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