How Many *n*-vertex Triangulations Does the 3-sphere Have?

by Eran Nevo & Stedman Wilson

Known upper $2^{O(n^{\lceil \frac{d}{2} \rceil} \log(n))}$ and lower $2^{\Omega(n^{\lfloor \frac{d}{2} \rfloor})}$ bound for the number of combinatorially distinct *n*-vertex triangulations of *d*-spheres. For 3-spheres gap very big, we show how to construct at least $2^{\Omega(n^2)}$ such triangulations.

Theorem. 1.1 For each $n \ge 1$ there exists a 3-dimensional polyhedral sphere with 5n + 4 vertices, such that n^2 of its facets are combinatorially equivalent to a bipyramid.

Corollary. 1.2 The 3-sphere admits $2^{\Omega(n^2)}$ combinatorially distinct triangulations on *n* vertices.

A Few Terms from Algebraic Topology

- simplex $C = \{\theta_0 u_0 + \dots + \theta_k u_k | \theta_i \ge 0, 0 \le i \le k, \sum_{i=0}^k \theta_i = 1\}$ generalization of triangle and tetrahedron to arbitrary dimensions
- simplicial complex \mathcal{X} is a set of simplexes that satisfies
 - any face of a simplex from \mathcal{X} is also in \mathcal{X} .
 - the intersection of any two simplexes $\sigma_1, \sigma_2 \in \mathcal{X}$ is a face of both σ_1 and σ_2 .
- face is the convex hull of any nonempty subset of the n+1 points that define an n-simplex
- \mathcal{X} is said to be **pure** if all its maximal (w.r.t. inclusion) faces have the same dimension
- facet of a simplex is a face of maximal dimension (for a simplex n 1-faces)
- facet of a simplicial complex is any simplex, which is not par of any larger simplex
- *k*-complex if all facets are *k*-faces i.e. faces of dimension *k*
- $\partial \mathcal{X}$ the **boundary** complex of \mathcal{X} is a subcomplex of \mathcal{X} which contains those faces which are in ! one facet of \mathcal{X}
- a face F is **interior** if $F \notin \partial \mathcal{X}$
- link of a face F is a subcomplex $\{T \in \mathcal{X}; T \cap F = \emptyset; T \cup F \in \mathcal{X}\}$
- star of a face F is a subcomplex $\{T \in \mathcal{X}; F \subseteq T; Tfacet \in \mathcal{X}\}$
- two complexes are said to be **combinatorially equivalent** / **isomorphic** if their lattices (partial order by set containment of faces) are isomorphic.
- *n*-sphere $S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = r\}$
- *n*-ball $B^n = \{x \in \mathbb{R}^{n+1} : ||x|| \le r\}$
- (n-1)-sphere = ∂ *n*-ball
- we will consider complexes which are only homeomorphic to spheres & balls
- moment curve in \mathbb{R}^d is a curve $\alpha_d : \mathbb{R} \to \mathbb{R}^d$ defined $\alpha_d(t) := (t, t^2, t^3, \dots, t^d)$
- cyclic *d*-polytope C(n, d) is the convex hull of the *n* points $\alpha_d(1), \ldots, \alpha_d(n)$

Lemma. Gail's evenness condition All facets of C(n, d) are (d - 1)-simplices. Furthermore, for any set of d integers $I \subset [n]$, the convex hull $conv(\alpha_d(I))$ is a facet of C(n, d) iff for every $x, y \in [n] \setminus I$, there are an even number of elements $z \in I$ satisfying x < z < y.

Construction of the Polyhedral Sphere

- we take cyclic 4-polytope C(4n + 4, 4)
- P(n) polyhedral complex comb. isomorphic to $\partial C(4n + 4, 4)$
- P(n) is homeomorphic to a 3-sphere
- $A(n) = \{m \in [n+2, 3n+1]; m = 2k, k \in \mathbb{Z}\}$
- facets of P(n)
 - * $I(a, u, 1) := \{a u 1, a u, a + u, a + u + 1\}$
 - * $I(a, u, 2) := \{a u 1, a u, a + u + 1, a + u + 2\}$
 - * $I(a, u, 3) := \{a u, a u + 1, a + u + 1, a + u + 2\}$

Lemma. For all $a \in A(n), u, u' \in [n], i, j \in [3]$, if $u' \leq u - 1$ then

$$I(a, u, i) \cap I(a, u', j) \subseteq \begin{cases} \{a - u, a + u, a + u + 1\}, & i = 1\\ \{a - u, a + u + 1\}, & i = 2\\ \{a - u, a - u - 1, a + u + 1\}, & i = 3 \end{cases}$$

- $B_0(a) := \{I(a, u, 1); u \in [n], i \in [3]\}, B(a)$ is the closure of $B_0(a)$ under subsets
- shelling is an ordering F_1, F_2, \ldots, F_p of the maximal simplexes of \mathcal{X} such that the complex $\mathcal{B}_k := \left(\bigcup_{i=1}^{k-1} F_i\right) \cap F_k$ is pure and $(\dim F_k 1)$ -dimensional for all $k = 2, 3, \ldots p$.

Lemma. 3.2 For each $a \in A(n)$, the simplicial complex B(a) is a shellable simplicial 3-ball.

Lemma. 3.3 For distinct each $a, a' \in A(n)$, the intersection $B(a) \cap B(a')$ does not contain a 2-face of P(n).

Lemma. 3.4 For distinct $a, a' \in A(n)$, we have $B(a) \cap B(a') \subset \partial B(a) \cap \partial B(a')$.

• some new notation:

 $\begin{array}{ll} x_{-}(a,u,1):=a-u-1 & x_{+}(a,u,1):=a+u \\ x_{-}(a,u,2):=a-u-1 & x_{+}(a,u,2):=a+u+2 \\ x_{-}(a,u,3):=a-u+1 & x_{+}(a,u,3):=a+u+2 \end{array}$

Lemma. 3.5 For every $a \in A(n)$, the 2-faces of the boundary complex $\partial B(a)$ are exactly the triangles $I_{\sigma}(a, u, i) \cup \{x_{-\sigma(a, u, i)}\}$, for $u \in [n], i \in [3], \sigma \in \{+, -\}$.

• $E(a, u) := \{a - u, a + u + 1\}$

Lemma. 3.6 The interior edges of B(a) are exactly the edges $\{E(a, u) : u \in [n]\}$.

- $T_{\sigma}(a,u) := I_{\sigma}(a,u,1) \cup \{x_{-\sigma}(a,u,1)\}$ triangles without $E(a,u) = \{a-u, a+u+1\}$
- D(a, u) := closure of $\{T_{-}(a, u), T_{+}(a, u)\}$ under subsets (a 2-ball)
- $R(a, u) := T_{-}(a, u) \cap T_{+}(a, u) = \{a u 1, a + u\}$ (unique interior edge in D(a, u))

Lemma. 3.7 For $(a, u) \neq (a', u')$ the disks D(a, u) and D(a', u') intersect in a single face. When a = a', this intersection lies on the boundary of both disks.