Directed Steiner Tree

and the Lasserre Hierarchy

Thomas Rothvoß

Presented by Martin Koutecky
Combinatorics and Graph Theory PhD Seminar, 2014, MFF UK

Directed Steiner Tree

D(Directed Steiner Tree):
Input: directed weighted graph $G=(V, E, c)$, root $r \in V$, terminals $X \subseteq V$
Goal: Find a tree T connecting r and X, minimizing $c(T)$.
W.l.o.g. G is acyclic.
$\mathbf{T}($ Nodes in ℓ layers (Zelikovsky '97)): For every $l \geq 1$, there is a tree T (potentially using edges in the metric closure) of cost $c(T) \leq \ell \cdot|X|^{1 / l} \cdot O P T$ such that every r-s path (with $s \in X$) in T contains at most l edges.
That is: Modulo $O(\log |X|)$ factor, we may assume $\ell=\log |X|$ layers. Known results:

- Generalizes Set Cover, (Non-Metric / Multi-level) Facility Location, Group Steiner Tree
- $\Omega\left(\log ^{2-\epsilon} n\right)$-hard (Halperin, Krauthgamer '03)
- $|X|^{\epsilon}$-apx in poly by sophisticated greedy algo (Zelikovsky '97)
- $O\left(\log ^{3}|X|\right)$-apx in $n^{O(\log |X|)}$ time by more sophisticated greedy algo (Charikar, Chekuri, Cheung, Goel, Guha and Li '99)
- LP's have integrality gap $\Omega(\sqrt{k})$ already for 5 layers; existing attempts fail (Alon, Moitra, Sudakov '12).

Lasserre Hierarchy

Intuition: Take a polytope $K=\left\{x \in \mathbb{R}^{n} \mid A x \geq b\right\}$ such that $K_{I}:=K \cap\{0,1\}^{n}$ precisely corresponds to solutions of a given problem (e.g. Independent Set). Then every point $x \in \operatorname{conv}\left(K_{I}\right)$ corresponds to a probability distribution of valid solutions. The problem is that in general $K \neq K_{I}$, so $x \in K$ may not correspond to a distribution of valid solutions.
What is wrong with $x \in K \backslash \operatorname{conv}\left(K_{I}\right)$? It only gives us valid marginal probabilities, but it might not satisfy e.g. $\operatorname{Pr}\left[X_{i}=X_{j}=1\right] \in$ $\left[\max \left\{x_{i}+x_{j}-1,0\right\}, \min \left\{x_{i}, x_{j}\right\}\right]$ for $i \neq j$. What about introducing variables for every $I \subseteq[n],|I|=2$? That would ensure the solution to be sensible w.r.t. second moments. Now generalize to higher moments..

Notation: Let $\mathcal{P}_{t}([n]):=\{I \subseteq[n]| | I \mid \leq t\}$ be the set of all index sets of cardinality at most t and let $y \in \mathbb{R}^{\mathcal{P}_{2 t+2}([n])}$ be a vector with entries y_{I} for all $I \subseteq[n]$ with $|I| \leq 2 t+2$. Intuitively $y_{\{i\}}$ represents the original variable x_{i} and the new variables y_{I} represent $\prod_{i \in I} x_{i}$.
\mathbf{D} (Moment matrix): $M_{t+1}(y) \in \mathbb{R}^{\mathcal{P}_{t+1}([n]) \times \mathcal{P}_{t+1}([n])}$:

$$
\left.M_{t+1}(y)\right)_{I, J}:=y_{I \cup J} \quad \forall|I|,|J| \leq t+1
$$

\mathbf{D} (Moment matrix of slacks): For the ℓ-th $(\ell \in[m])$ constraint of the LP $A^{T} x \geq b$, we create $M_{t}^{\ell}(y) \in \mathbb{R}^{\mathcal{P}_{t}([n]) \times \mathcal{P}_{t}([n])}$:

$$
M_{t}^{\ell}(y)_{I, J}:=\left(\sum_{i=1}^{n} A_{l i} y_{I \cup J \cup\{i\}}\right)-b_{l} y_{I \cup J}
$$

$\mathbf{D}\left(t\right.$-th level of the Lasserre hierarchy): Let $K=\left\{x \in \mathbb{R}^{n} \mid A x \geq b\right\}$ Then $\operatorname{LAS}_{t}(K)$ is the set of vectors $y \in \mathbb{R}^{\mathcal{P}_{2 t+2}([n])}$ that satisfy

$$
M_{t+1}(y) \succeq 0 ; \quad M_{t}^{\ell}(y) \succeq 0 \quad \forall \ell \in[m] ; \quad y_{\emptyset}=1
$$

Furthermore, let $\operatorname{LaS}_{t}^{\text {proj }}:=\left\{\left(y_{\{1\}}, \ldots, y_{\{n\}}\right) \mid y \in \operatorname{LAS}_{t}(K)\right\}$ be the projection on the original variables.
Intuition: $M_{t+1}(y) \succeq 0$ ensures consistency (y behaves locally as a distribution) while $M_{t}^{\ell}(y) \succeq 0$ guarantees that y satisfies the l-th linear constraint.
\mathbf{T} (Lasserre properties): Let $K=\left\{x \in \mathbb{R}^{n} \mid A x \geq b\right\}$ and $y \in$ $\operatorname{LaS}_{t}(K)$. Then the following holds:
(a) $\operatorname{conv}\left(K \cap\{0,1\}^{n}\right)=\operatorname{LAS}_{n}^{\text {proj }}(K) \subseteq \ldots \subseteq \operatorname{LAS}_{0}^{\text {proj }}(K) \subseteq K$.
(b) We have $0 \leq y_{I} \leq y_{J} \leq 1$ for all $I \supseteq J$ with $0 \leq|J| \leq|I| \leq t$.
(c) Let $I \subseteq[n]$ with $|I| \leq t$. Then

$$
K \cap\left\{x \in \mathbb{R}^{n} \mid x_{i}=1 \forall i \in I\right\}=\emptyset \Longrightarrow y_{I}=0
$$

(d) Let $I \subseteq[n]$ with $|I| \leq t$. Then

$$
y \in \operatorname{conv}\left(\left\{z \in \operatorname{LAS}_{t-|I|}(K) \mid z_{\{i\}} \in\{0,1\} \forall i \in I\right\}\right) .
$$

(e) Let $S \subseteq[n]$ be a subset of variables such that not many can be equal to 1 at the same time

$$
\max \left\{|I|: I \subseteq S ; x \in K ; x_{i}=1 \forall i \in I\right\} \leq k<t
$$

Then we have

$$
y \in \operatorname{conv}\left(\left\{z \in \operatorname{LAS}_{t-k}(K) \mid z_{\{i\}} \in\{0,1\} \forall i \in S\right\}\right)
$$

(f) For any $|I| \leq t$ we have $y_{I}=1 \Leftrightarrow \bigwedge_{i \in I}\left(y_{\{i\}}=1\right)$.
(g) For $|I| \leq t:\left(\forall i \in I: y_{\{i\}} \in\{0,1\}\right) \Longrightarrow y_{I}=\prod_{i \in I} y_{\{i\}}$
(h) Let $|I|,|J| \leq t$ and $y_{I}=1$. Then $y_{I \cup J}=y_{J}$.

Remark: Property (e) is very strong and does not hold for the Sherali-Adams or Lovász-Schrijver hierarchy. For example, it implies that after $t=O\left(\frac{1}{e}\right)$ rounds, the integrality gap for the KNAPSACK polytope is bounded by $1+\varepsilon$ (taking S as all items that have profit at least $\varepsilon \cdot O P T)$. Another example is that the Independent Set polytope $\left\{x \in \mathbb{R}_{+}^{V} \mid x_{u}+x_{v} \leq 1 \forall\{u, v\} \in E\right\}$ describes the integral hull after $\alpha(G)$ rounds of Lasserre.
Vector representation: For each event $\bigcap_{i \in I}\left(x_{i}=1\right)$ with $|I| \leq t$ there is a vector v_{I} representing it in a consistent way:
L (Vector Representation Lemma):Let $y \in \operatorname{LaS}_{t}(K)$. Then there is a family of vectors $\left(\mathbf{v}_{I}\right)_{|I| \leq t}$ such that $\left\langle\mathbf{v}_{I}, \mathbf{v}_{J}\right\rangle=y_{I \cup J}$ for all $|I|,|J| \leq t$. In particular $\left\|\mathbf{v}_{I}\right\|_{2}^{2}=y_{I}$ and $\left\|\mathbf{v}_{\emptyset}\right\|_{2}^{2}=1$.

The linear program

Idea: Send a unit flow from the root to each terminal $s \in X$ (represented by variables $f_{s, e}$). On each edge we have to pay $y_{e}=$ $\max \left\{f_{s, e} \mid s \in X\right\}$. We abbreviate $\delta^{+}(v)$ and $\delta^{-}(v)$ the edges outgoing and incoming to v, respectively. Also, $y\left(E^{\prime}\right):=\sum_{e \in E^{\prime}} y_{e}$.

$$
\begin{aligned}
\min \sum_{e \in E} c_{e} y_{e} & \\
\sum_{e \in \delta^{+}(v)} f_{s, e}-\sum_{e \in \delta^{-}(v)} f_{s, e} & =\left\{\begin{array}{ll}
1 & v=r \\
-1 & v=s \\
0 & \text { otherwise }
\end{array} \quad \forall s \in X \forall v \in V\right. \\
f_{s, e} & \leq y_{e} \quad \forall s \in X \forall e \in E \\
y\left(\delta^{-}(v)\right) & \leq 1 \quad \forall v \in V \\
0 \leq y_{e} & \leq 1 \quad \forall e \in E \\
0 \leq f_{s, e} & \leq 1 \quad \forall s \in X \forall e \in E
\end{aligned}
$$

Lasserre strenghtening: Now we make the choice $t:=2 \ell$. Our variable indices are $\mathcal{V}_{t}=\{(P, H)|P \subseteq E ; H \subseteq X \times E ;|P|+|H| \leq 2 t+2\}$ - that is $\operatorname{LaS}_{t}(K) \subseteq[0,1]^{\mathcal{V}_{t}}$. Let $Y=\left(Y_{P, H}\right)_{(P, H) \in \mathcal{V}_{t}} \in \operatorname{LaS}_{t}(K)$ be an optimum solution for the Lasserre relaxation, which can be computed in time $n^{O(t)}$. We abbreviate $O P T_{f}:=\sum_{e \in E} c_{e} y_{\{e\}}$ as the objective function value.

We will only address either groups of y_{e} variables (then we write $y_{H}:=Y_{H, \emptyset}$ for $H \subseteq E$), or we address groups of $f_{s, e}$ variables for the same terminal $s \in X$. Then we write $f_{s, H}:=Y_{\emptyset,\{(s, e) \mid e \in H\}}$.

The rounding algorithm

Idea: Sample a set T of paths from a distribution that depends on Y. Start at layer 0 and go through all layers and for each path P (ending in node u) that is sampled so far, extend it to $P \cup\{(u, v)\}$ with probability $\frac{y_{P \cup\{(u, v)\}}}{y_{P}}$.
(1) $T:=\emptyset$
(2) FOR ALL $e \in \delta^{+}(r) \mathrm{DO}$
(3) independently, with prob. $y_{\{e\}}$, add path $\{e\}$ to T
(4) FOR $j=1, \ldots, \ell-1 \mathrm{DO}$
(5) FOR ALL $u \in V_{j}$ and all r - u paths $P \in T$ DO
(6) FOR ALL $e \in \delta^{+}(u) \mathrm{DO}$
(7) independently with prob. $\frac{y_{P} \cup\{e\}}{y_{P}}$ add $P \cup\{e\}$ to T
(8) return $E(T)$.

Remark: We do not remove partial paths, because they will be useful in the analysis.

Notation: $V(P)$ is the set of vertices on path $P, E(T)$ the set of all edges on any path of $T, V(T)$ all vertices of T.

Analysis

We will:
(i) show that for each edge e the probability to be included is $\operatorname{Pr}[e \in E(T)] \leq y_{\{e\}}$.
(ii) prove that for each terminal $s \in X$, the probability to be connected by a path satisfies $\operatorname{Pr}[s \in V(T)] \geq \Omega\left(\frac{1}{\ell}\right)$.
Part (i) provides that the expected cost for the sampled paths is at most $O P T_{f}$, while part (ii) implies that after repeating the sampling procedure $O(\ell \log |X|)$ times, each terminal will be connected to the root with high probability.

Upper bounding the expected cost

Notation: Let $Q(v):=\{P \mid P$ is $r-v$ path $\}$ be the set of paths from the root to v. For an edge e let $Q(e)$ be the set of $r-v$ paths that have e as last edge.
$\mathrm{L}(1)$:Let P be an $r-v$ path with $v \in V$. Then $\operatorname{Pr}[P \in T]=y_{P}$

Each edge e is sampled with probability at most $y_{\{e\}}$:
$\mathrm{L}(2)$: For any edge $e \in E$, one has $\sum_{P \in Q(e)} y_{P} \leq y_{\{e\}}$.
$\mathbf{P}(2)$:By induction over the layers. Use Lasserre property (d) and (h)
$\mathrm{L}(3): \operatorname{Pr}[e \in E(T)] \leq y_{\{e\}}$ and $E[c(E(T))] \leq \sum_{e \in E} c_{e} y_{\{e\}}$
$\mathbf{P}(3)$:Using Lemmas 1 and 2 and linearity of expectation.

Lower bounding the success probability

$\mathrm{L}(4)$:Fix a terminal $s \in X$ and an $r-v$ path P^{\prime} for some $v \in V$. Then a) $\sum_{P \in Q(s)} y_{P}=1$
b) $\sum_{P \in Q(s): P^{\prime} \subseteq P}^{P \in Q(s)} y_{P}=1$.
$\mathbf{P}(4)$:Consecutively using Lasserre properties (e), (b), (f).
Now fix a terminal $s \in X$ and let $Z:=|T \cap Q(s)|$ be the r. v. that yields the number of sampled paths that end in s.
$\mathbf{C}(5): E[Z]=1 \quad \mathbf{P}(5):$ By lemmas 1 and $4(\mathrm{a})$.
Curiously, we have to prove an upper bound on Z in order to lower bound $\operatorname{Pr}[Z \geq 1]$.
$\mathrm{L}(6): E[Z \mid Z \geq 1] \leq l+1 \quad \mathbf{P}(6):$ By lemmas 1 and 4
$\mathrm{L}(7): \operatorname{Pr}[Z \geq 1] \geq \frac{1}{l+1} \quad \mathbf{P}(7)$: By the law of total probability.

Our integrality gap is $O(\ell \log |X|)$

$\mathbf{T}(8):$ Let $Y \in \operatorname{Las}_{t}(K)$ be a given $t=2 \ell$ round Lasserre solution. Then one can compute a feasible solution $H \subseteq E$ with $E[c(H)] \leq$ $O(\ell \log |X|) \cdot \sum_{e \in E} y_{\{e\}}$. The expected number of Lasserre queries and the expected overhead running time are both polynomial in n $\mathbf{P}(8)$:Repeat the sampling algorithm for $2 \ell \log |X|$ many times and let H be the union of the sampled paths.
$\mathbf{C}(9):|X|^{\epsilon}$-apx algo in poly time, or take $\ell=\log |X| \Rightarrow O\left(\log ^{3}|X|\right)$ apx in quasipoly $\left(n^{O(\log |X|)}\right)$ time.
\mathbf{Q} (Open):Is there a convex relaxation with polylog $(|X|)$ integrality gap that can be solved in poly time? It would suffice to have a polynomial time oracle that takes a path $P \subseteq E$ and outputs the Lasserre entry y_{P}.

