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Directed Steiner Tree

D(DIRECTED STEINER TREE):

Input: directed weighted graph G = (V, E,¢), root r € V, termi-
nals X CV

Goal: Find a tree T connecting 7 and X, minimizing ¢(7T').
W.lo.g. G is acyclic.

T(Nodes in £ layers (Zelikovsky ’97)): For every | > 1, there is
a tree T (potentially using edges in the metric closure) of cost
e(T) < £-|X|"/* - OPT such that every r-s path (with s € X) in
T contains at most [ edges.

That is: Modulo O(log | X|) factor, we may assume ¢ = log | X| layers.
Known results:

e Generalizes SET COVER, (NON-METRIC / MULTI-LEVEL) FACIL-
ITY LOCATION, GROUP STEINER TREE

o Q(log?~¢n)-hard (Halperin, Krauthgamer ’03)

e |X|¢-apx in poly by sophisticated greedy algo (Zelikovsky '97)

e O(log? | X|)-apx in n©(°8 |X1) time by more sophisticated greedy
algo (Charikar, Chekuri, Cheung, Goel, Guha and Li "99)

e LP’s have integrality gap Q(vk) already for 5 layers; existing
attempts fail (Alon, Moitra, Sudakov '12).

Lasserre Hierarchy

Intuition: Take a polytope K = {z € R"|Az > b} such that
Ky := K n{0,1}" precisely corresponds to solutions of a given
problem (e.g. INDEPENDENT SET). Then every point z € conv(K7)
corresponds to a probability distribution of valid solutions. The
problem is that in general K # K7, so z € K may not correspond to
a distribution of valid solutions.

What is wrong with z € K\ conv(K7)? It only gives us valid marginal
probabilities, but it might not satisfy e.g. Pr[X; = X; = 1] €
[max{z; + =; — 1,0}, min{x;, z;}] for i # j. What about introducing
variables for every I C [n],|I| = 2? That would ensure the solu-
tion to be sensible w.r.t. second moments. Now generalize to higher
moments...

Notation: Let Pi([n]) := {I C [n] | |I|] < t} be the set of all index
sets of cardinality at most ¢ and let y € RP2t+2([7]) be a vector with
entries yy for all I C [n] with |I| < 2t + 2. Intuitively yy;) represents
the original variable x; and the new variables y; represent Hiel z;.

D(Moment matrix): M;11(y) € RPt+1([nD)xPepa([n]).
Mep1(Y))r,g =yrus VLI <t+ 1

D(Moment matrix of slacks): For the ¢-th (¢ € [m]) constraint of the
LP ATz > b, we create M{(y) € RP:([)xPu([n]),

n
M{W)r,0 = O Auyrusogiy) — bvius
i=1
D(t-th level of the Lasserre hierarchy): Let K = {z € R | Az > b}.
Then Las:(K) is the set of vectors y € RP2t+2(["]) that satisfy
M{(y) =0 VL€ [m];

Miy1(y) = 05 yp = L.

Furthermore, let LASf’roj ={lyay---
projection on the original variables.

Yin}) | ¥ € Last(K)} be the

Intuition: M;1(y) = O ensures consistency (y behaves locally as
a distribution) while M{(y) = 0 guarantees that y satisfies the I-th
linear constraint.

T(Lasserre properties): Let K =
LAs¢(K). Then the following holds:

(a) conv(K N{0,1}") = Lasy™ (K) C ... C Lasy™(K) C K.
(b) We have 0 <yy <yy <1lforallID Jwith0<|J|<|I|<t.
(¢) Let I C [n] with |I| <t. Then

{z € R" | Az > b} and y €

Kﬂ{l’ERn|£BZ:1Vl€I}=@ — yI:O,
(d) Let I C [n] with |I| <+¢. Then
y € conv({z € Las,_ ;) (K) | zg5 € {0,1} Vi € I}).

(e) Let S C [n] be a subset of variables such that not many can be
equal to 1 at the same time:

max{|I|: ICS;z € K;z;, =1Vie [} <k <t
Then we have

y € conv({z € Las;_(K) | z(;3 € {0,1} Vi € S}).
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For any |I| <t we have yr =1 & A;jcr(yy = 1)
(g) For [I| <t: (Vi€ :yyy €4{0,1}) = yr = [Licr viay-
(h) Let |I],|J| <t and y; = 1. Then yrug =y

Remark: Property (e) is very strong and does not hold for the
Sherali-Adams or Lovéasz-Schrijver hierarchy. For example, it implies
that after ¢t = O(é) rounds, the integrality gap for the KNAPSACK
polytope is bounded by 1 + ¢ (taking S as all items that have profit
at least ¢ - OPT). Another example is that the INDEPENDENT SET
polytope {z € RK | 2y + o < 1 V{u,v} € E} describes the integral
hull after a(G) rounds of Lasserre.

Vector representation: For each event [);c;(z; = 1) with |I| <t
there is a vector vy representing it in a consistent way:

L(Vector Representation Lemma):Let y € LAS;(K). Then there
is a family of vectors (vi)|r|<¢ such that (vy,v;) = yrus for all
|1],|J] < t. In particular ||vr||3 = ys and |vg|]3 = 1.

The linear program

Idea: Send a unit flow from the root to each terminal s € X (rep-
resented by variables fs.). On each edge we have to pay ye =
max{fse|s € X}. We abbreviate §t(v) and 6~ (v) the edges out-
going and incoming to v, respectively. Also, y(E’) := > c g/ Ve-

min E CelYe

eck
1 v=r
ST o foe— D fee = -1 v=s Vse XVweV
e€dt(v) e€d~ (v) 0  otherwise
fs,e < ye VseXVeeFE
y(d~(v)) < 1 YweV
0<ye < 1 VeeF
0<fse < 1 VseXVeekFE

Lasserre strenghtening: Now we make the choice ¢ := 2¢. Our vari-
able indices are Vi = {(P,H) | PC E; H C X X E; |P|+|H| < 2t+2}
— that is Las¢(K) C [0,1]Vt. Let Y = (Yp,u)(p.m)ev, € Las:(K) be
an optimum solution for the Lasserre relaxation, which can be com-
puted in time n©(*). We abbreviate OPTy := 3] CeYie} as the
objective function value.

ecE

We will only address either groups of ye variables (then we write
yu =Yg g for H C E), or we address groups of fs . variables for the
same terminal s € X. Then we write fs g 1= Yp {(s,e)|ecH}-

The rounding algorithm

Idea: Sample a set T of paths from a distribution that depends on
Y. Start at layer 0 and go through all layers and for each path P
(ending in node u) that is sampled so far, extend it to P U {(u,v)}
. . YPu{(u,v

with probability #.
1) T:=0
(2) FOR ALL e € 67 (r) DO

(3) independently, with prob. y;.y, add path {e} to T
(4) FORj=1,...,£—1DO

(5) FOR ALL u € V; and all r-u paths P € T DO

(6) FOR ALL e € 6+ (u) DO
(7) independently with prob. yp;% add P U {e} to
T

(8) return E(T).

Remark: We do not remove partial paths, because they will be useful
in the analysis.

Notation: V(P) is the set of vertices on path P, E(T) the set of all
edges on any path of T, V(T') all vertices of T'.



Analysis
We will:
(i) show that for each edge e the probability to be included is
Prle € E(T)] < yqe}-
(ii) prove that for each terminal s € X, the probability to be con-
nected by a path satisfies Pr[s € V(T)] > Q(%)
Part (i) provides that the expected cost for the sampled paths is at
most OPTYy, while part (i¢) implies that after repeating the sampling

procedure O(¢log|X|) times, each terminal will be connected to the
root with high probability.

Upper bounding the expected cost

Notation: Let Q(v) := {P | P is r-v path} be the set of paths from
the root to v. For an edge e let Q(e) be the set of r-v paths that have
e as last edge.

L(1):Let P be an r-v path with v € V. Then Pr[P € T| = yp.

Each edge e is sampled with probability at most y.;:

L(2):For any edge e € E, one has ZPGQ(e) yP < Y{e}-

P(2):By induction over the layers. Use Lasserre property (d) and (h).
L(3):Prle € E(T)] < yqey and E[c(E(T))] < Yocep Celie}
P(3):Using Lemmas 1 and 2 and linearity of expectation.

Lower bounding the success probability

L(4):Fix a terminal s € X and an r-v path P’ for some v € V. Then
) 2ipeq(s) YP =1

bg peQ(z);p/gp yp < ypr.

P(4):Consecutively using Lasserre properties (e), (b), (f).

Now fix a terminal s € X and let Z := |T' N Q(s)| be the r. v. that
yields the number of sampled paths that end in s.

C(5):E[Z] =1 P(5):By lemmas 1 and 4(a).

Curiously, we have to prove an upper bound on Z in order to lower
bound Pr[Z > 1].

L(6):E[Z|Z>1]<1+1
L(7):Pr[Z > 1] > 47 P(7):By the law of total probability.

P(6):By lemmas 1 and 4

Our integrality gap is O(¢log|X|):

T(8):Let Y € Las¢(K) be a given ¢t = 2¢ round Lasserre solution.
Then one can compute a feasible solution H C E with E[c(H)] <
O(Llog|X|) - > cep Y{e}- The expected number of Lasserre queries
and the expected overhead running time are both polynomial in n.
P(8):Repeat the sampling algorithm for 2¢log | X | many times and let
H be the union of the sampled paths.

C(9):|X|-apx algo in poly time, or take £ = log |X| = O(log® | X|)-
apx in quasipoly (no(log ‘X“) time.

Q(Open):Is there a convex relaxation with polylog(|X|) integrality
gap that can be solved in poly time? It would suffice to have a poly-
nomial time oracle that takes a path P C E and outputs the Lasserre
entry yp.



