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Directed Steiner Tree
D(Directed Steiner Tree):

Input: directed weighted graph G = (V,E, c), root r ∈ V , termi-
nals X ⊆ V
Goal: Find a tree T connecting r and X, minimizing c(T ).

W.l.o.g. G is acyclic.

T(Nodes in ` layers (Zelikovsky ’97)): For every l ≥ 1, there is
a tree T (potentially using edges in the metric closure) of cost
c(T ) ≤ ` · |X|1/l · OPT such that every r-s path (with s ∈ X) in
T contains at most l edges.

That is: Modulo O(log |X|) factor, we may assume ` = log |X| layers.

Known results:

• Generalizes Set Cover, (Non-Metric / Multi-level) Facil-
ity Location, Group Steiner Tree

• Ω(log2−ε n)-hard (Halperin, Krauthgamer ’03)

• |X|ε-apx in poly by sophisticated greedy algo (Zelikovsky ’97)

• O(log3 |X|)-apx in nO(log |X|) time by more sophisticated greedy
algo (Charikar, Chekuri, Cheung, Goel, Guha and Li ’99)

• LP’s have integrality gap Ω(
√
k) already for 5 layers; existing

attempts fail (Alon, Moitra, Sudakov ’12).

Lasserre Hierarchy
Intuition: Take a polytope K = {x ∈ Rn|Ax ≥ b} such that
KI := K ∩ {0, 1}n precisely corresponds to solutions of a given
problem (e.g. Independent Set). Then every point x ∈ conv(KI)
corresponds to a probability distribution of valid solutions. The
problem is that in general K 6= KI , so x ∈ K may not correspond to
a distribution of valid solutions.

What is wrong with x ∈ K \conv(KI)? It only gives us valid marginal
probabilities, but it might not satisfy e.g. Pr[Xi = Xj = 1] ∈
[max{xi + xj − 1, 0},min{xi, xj}] for i 6= j. What about introducing
variables for every I ⊆ [n], |I| = 2? That would ensure the solu-
tion to be sensible w.r.t. second moments. Now generalize to higher
moments...

Notation: Let Pt([n]) := {I ⊆ [n] | |I| ≤ t} be the set of all index
sets of cardinality at most t and let y ∈ RP2t+2([n]) be a vector with
entries yI for all I ⊆ [n] with |I| ≤ 2t+ 2. Intuitively y{i} represents
the original variable xi and the new variables yI represent

∏
i∈I xi.

D(Moment matrix): Mt+1(y) ∈ RPt+1([n])×Pt+1([n]):

Mt+1(y))I,J := yI∪J ∀|I|, |J | ≤ t+ 1.

D(Moment matrix of slacks): For the `-th (` ∈ [m]) constraint of the
LP AT x ≥ b, we create M`

t (y) ∈ RPt([n])×Pt([n]):

M`
t (y)I,J := (

n∑
i=1

AliyI∪J∪{i})− blyI∪J

D(t-th level of the Lasserre hierarchy): Let K = {x ∈ Rn | Ax ≥ b}.
Then Last(K) is the set of vectors y ∈ RP2t+2([n]) that satisfy

Mt+1(y) � 0; M`
t (y) � 0 ∀` ∈ [m]; y∅ = 1.

Furthermore, let Lasprojt := {(y{1}, . . . , y{n}) | y ∈ Last(K)} be the
projection on the original variables.

Intuition: Mt+1(y) � 0 ensures consistency (y behaves locally as
a distribution) while M`

t (y) � 0 guarantees that y satisfies the l-th
linear constraint.

T(Lasserre properties): Let K = {x ∈ Rn | Ax ≥ b} and y ∈
Last(K). Then the following holds:

(a) conv(K ∩ {0, 1}n) = Lasprojn (K) ⊆ . . . ⊆ Lasproj0 (K) ⊆ K.

(b) We have 0 ≤ yI ≤ yJ ≤ 1 for all I ⊇ J with 0 ≤ |J | ≤ |I| ≤ t.

(c) Let I ⊆ [n] with |I| ≤ t. Then

K ∩ {x ∈ Rn | xi = 1 ∀i ∈ I} = ∅ =⇒ yI = 0.

(d) Let I ⊆ [n] with |I| ≤ t. Then

y ∈ conv({z ∈ Last−|I|(K) | z{i} ∈ {0, 1} ∀i ∈ I}).

(e) Let S ⊆ [n] be a subset of variables such that not many can be
equal to 1 at the same time:

max{|I| : I ⊆ S;x ∈ K;xi = 1 ∀i ∈ I} ≤ k < t.

Then we have

y ∈ conv({z ∈ Last−k(K) | z{i} ∈ {0, 1} ∀i ∈ S}).

(f) For any |I| ≤ t we have yI = 1⇔
∧
i∈I(y{i} = 1).

(g) For |I| ≤ t: (∀i ∈ I : y{i} ∈ {0, 1}) =⇒ yI =
∏
i∈I y{i}.

(h) Let |I|, |J | ≤ t and yI = 1. Then yI∪J = yJ .

Remark: Property (e) is very strong and does not hold for the
Sherali-Adams or Lovász-Schrijver hierarchy. For example, it implies
that after t = O( 1

ε
) rounds, the integrality gap for the Knapsack

polytope is bounded by 1 + ε (taking S as all items that have profit
at least ε · OPT ). Another example is that the Independent Set
polytope {x ∈ RV+ | xu + xv ≤ 1 ∀{u, v} ∈ E} describes the integral
hull after α(G) rounds of Lasserre.

Vector representation: For each event
⋂
i∈I(xi = 1) with |I| ≤ t

there is a vector vI representing it in a consistent way:

L(Vector Representation Lemma):Let y ∈ Last(K). Then there
is a family of vectors (vI)|I|≤t such that 〈vI ,vJ 〉 = yI∪J for all

|I|, |J | ≤ t. In particular ‖vI‖22 = yI and ‖v∅‖22 = 1.

The linear program

Idea: Send a unit flow from the root to each terminal s ∈ X (rep-
resented by variables fs,e). On each edge we have to pay ye =
max{fs,e|s ∈ X}. We abbreviate δ+(v) and δ−(v) the edges out-
going and incoming to v, respectively. Also, y(E′) :=

∑
e∈E′ ye.

min
∑
e∈E

ceye

∑
e∈δ+(v)

fs,e −
∑

e∈δ−(v)

fs,e =


1 v = r

−1 v = s

0 otherwise

∀s ∈ X ∀v ∈ V

fs,e ≤ ye ∀s ∈ X ∀e ∈ E
y(δ−(v)) ≤ 1 ∀v ∈ V

0 ≤ ye ≤ 1 ∀e ∈ E
0 ≤ fs,e ≤ 1 ∀s ∈ X ∀e ∈ E

Lasserre strenghtening: Now we make the choice t := 2`. Our vari-
able indices are Vt = {(P,H) | P ⊆ E;H ⊆ X×E; |P |+ |H| ≤ 2t+2}
– that is Last(K) ⊆ [0, 1]Vt . Let Y = (YP,H)(P,H)∈Vt ∈ Last(K) be
an optimum solution for the Lasserre relaxation, which can be com-
puted in time nO(t). We abbreviate OPTf :=

∑
e∈E cey{e} as the

objective function value.

We will only address either groups of ye variables (then we write
yH := YH,∅ for H ⊆ E), or we address groups of fs,e variables for the
same terminal s ∈ X. Then we write fs,H := Y∅,{(s,e)|e∈H}.

The rounding algorithm

Idea: Sample a set T of paths from a distribution that depends on
Y . Start at layer 0 and go through all layers and for each path P
(ending in node u) that is sampled so far, extend it to P ∪ {(u, v)}
with probability

yP∪{(u,v)}
yP

.

(1) T := ∅
(2) FOR ALL e ∈ δ+(r) DO

(3) independently, with prob. y{e}, add path {e} to T
(4) FOR j = 1, . . . , `− 1 DO

(5) FOR ALL u ∈ Vj and all r-u paths P ∈ T DO
(6) FOR ALL e ∈ δ+(u) DO

(7) independently with prob.
yP∪{e}
yP

add P ∪ {e} to

T
(8) return E(T ).

Remark: We do not remove partial paths, because they will be useful
in the analysis.

Notation: V (P ) is the set of vertices on path P , E(T ) the set of all
edges on any path of T , V (T ) all vertices of T .



Analysis
We will:

(i) show that for each edge e the probability to be included is
Pr[e ∈ E(T )] ≤ y{e}.

(ii) prove that for each terminal s ∈ X, the probability to be con-
nected by a path satisfies Pr[s ∈ V (T )] ≥ Ω( 1

`
).

Part (i) provides that the expected cost for the sampled paths is at
most OPTf , while part (ii) implies that after repeating the sampling
procedure O(` log |X|) times, each terminal will be connected to the
root with high probability.

Upper bounding the expected cost

Notation: Let Q(v) := {P | P is r-v path} be the set of paths from
the root to v. For an edge e let Q(e) be the set of r-v paths that have
e as last edge.

L(1):Let P be an r-v path with v ∈ V . Then Pr[P ∈ T ] = yP .

Each edge e is sampled with probability at most y{e}:

L(2):For any edge e ∈ E, one has
∑
P∈Q(e) yP ≤ y{e}.

P(2):By induction over the layers. Use Lasserre property (d) and (h).

L(3):Pr[e ∈ E(T )] ≤ y{e} and E[c(E(T ))] ≤
∑
e∈E cey{e}

P(3):Using Lemmas 1 and 2 and linearity of expectation.

Lower bounding the success probability

L(4):Fix a terminal s ∈ X and an r-v path P ′ for some v ∈ V . Then

a)
∑
P∈Q(s) yP = 1

b)
∑
P∈Q(s):P ′⊆P yP ≤ yP ′ .

P(4):Consecutively using Lasserre properties (e), (b), (f).

Now fix a terminal s ∈ X and let Z := |T ∩ Q(s)| be the r. v. that
yields the number of sampled paths that end in s.

C(5):E[Z] = 1 P(5):By lemmas 1 and 4(a).

Curiously, we have to prove an upper bound on Z in order to lower
bound Pr[Z ≥ 1].

L(6):E[Z|Z ≥ 1] ≤ l + 1 P(6):By lemmas 1 and 4

L(7):Pr[Z ≥ 1] ≥ 1
l+1

P(7):By the law of total probability.

Our integrality gap is O(` log |X|):

T(8):Let Y ∈ Last(K) be a given t = 2` round Lasserre solution.
Then one can compute a feasible solution H ⊆ E with E[c(H)] ≤
O(` log |X|) ·

∑
e∈E y{e}. The expected number of Lasserre queries

and the expected overhead running time are both polynomial in n.
P(8):Repeat the sampling algorithm for 2` log |X| many times and let
H be the union of the sampled paths.

C(9):|X|ε-apx algo in poly time, or take ` = log |X| ⇒ O(log3 |X|)-
apx in quasipoly (nO(log |X|)) time.

Q(Open):Is there a convex relaxation with polylog(|X|) integrality
gap that can be solved in poly time? It would suffice to have a poly-
nomial time oracle that takes a path P ⊆ E and outputs the Lasserre
entry yP .


