Directed Steiner Tree and the Lasserre Hierarchy

Thomas Rothvoß

Presented by Martin Koutecký Combinatorics and Graph Theory PhD Seminar, 2014, MFF UK

Directed Steiner Tree

D(Directed Steiner Tree):

Input: directed weighted graph G = (V, E, c), root $r \in V$, terminals $X \subseteq V$

Goal: Find a tree T connecting r and X, minimizing c(T).

W.l.o.g. G is acyclic.

T(Nodes in ℓ layers (Zelikovsky '97)): For every $l \geq 1$, there is a tree T (potentially using edges in the metric closure) of cost $c(T) \leq \ell \cdot |X|^{1/l} \cdot OPT$ such that every r-s path (with $s \in X$) in T contains at most l edges.

That is: Modulo $O(\log |X|)$ factor, we may assume $\ell = \log |X|$ layers. Known results:

- Generalizes SET COVER, (NON-METRIC / MULTI-LEVEL) FACIL-ITY LOCATION, GROUP STEINER TREE
- $\Omega(\log^{2-\epsilon} n)$ -hard (Halperin, Krauthgamer '03)
- $|X|^\epsilon\text{-apx}$ in poly by sophisticated greedy algo (Zelikovsky '97)
- O(log³ |X|)-apx in n^{O(log |X|)} time by more sophisticated greedy algo (Charikar, Chekuri, Cheung, Goel, Guha and Li '99)
- LP's have integrality gap $\Omega(\sqrt{k})$ already for 5 layers; existing attempts fail (Alon, Moitra, Sudakov '12).

Lasserre Hierarchy

Intuition: Take a polytope $K = \{x \in \mathbb{R}^n | Ax \ge b\}$ such that $K_I := K \cap \{0, 1\}^n$ precisely corresponds to **solutions** of a given problem (e.g. INDEPENDENT SET). Then every point $x \in \operatorname{conv}(K_I)$ corresponds to a **probability distribution** of valid solutions. The problem is that in general $K \ne K_I$, so $x \in K$ may not correspond to a distribution of valid solutions.

What is wrong with $x \in K \setminus \operatorname{conv}(K_I)$? It only gives us valid marginal probabilities, but it might not satisfy e.g. $\Pr[X_i = X_j = 1] \in [\max\{x_i + x_j - 1, 0\}, \min\{x_i, x_j\}]$ for $i \neq j$. What about introducing variables for every $I \subseteq [n], |I| = 2$? That would ensure the solution to be sensible w.r.t. second moments. Now generalize to higher moments...

Notation: Let $\mathcal{P}_t([n]) := \{I \subseteq [n] \mid |I| \leq t\}$ be the set of all index sets of cardinality at most t and let $y \in \mathbb{R}^{\mathcal{P}_{2t+2}([n])}$ be a vector with entries y_I for all $I \subseteq [n]$ with $|I| \leq 2t+2$. Intuitively $y_{\{i\}}$ represents the original variable x_i and the new variables y_I represent $\prod_{i \in I} x_i$.

D(Moment matrix): $M_{t+1}(y) \in \mathbb{R}^{\mathcal{P}_{t+1}([n]) \times \mathcal{P}_{t+1}([n])}$:

 $M_{t+1}(y)_{I,J} := y_{I\cup J} \quad \forall |I|, |J| \le t+1.$

D(Moment matrix of slacks): For the ℓ -th $(\ell \in [m])$ constraint of the LP $A^T x \ge b$, we create $M_t^\ell(y) \in \mathbb{R}^{\mathcal{P}_t([n]) \times \mathcal{P}_t([n])}$:

$$M_t^{\ell}(y)_{I,J} := (\sum_{i=1}^n A_{li} y_{I \cup J \cup \{i\}}) - b_l y_{I \cup J}$$

D(*t*-th level of the Lasserre hierarchy): Let $K = \{x \in \mathbb{R}^n \mid Ax \ge b\}$. Then $\text{Las}_t(K)$ is the set of vectors $y \in \mathbb{R}^{\mathcal{P}_{2t+2}([n])}$ that satisfy

$$M_{t+1}(y) \succeq 0;$$
 $M_t^{\ell}(y) \succeq 0 \quad \forall \ell \in [m];$ $y_{\emptyset} = 1$

Furthermore, let $Las_t^{proj} := \{(y_{\{1\}}, \ldots, y_{\{n\}}) \mid y \in Las_t(K)\}$ be the projection on the original variables.

Intuition: $M_{t+1}(y) \succeq 0$ ensures consistency (y behaves locally as a distribution) while $M_t^{\ell}(y) \succeq 0$ guarantees that y satisfies the *l*-th linear constraint.

T(Lasserre properties): Let $K = \{x \in \mathbb{R}^n \mid Ax \ge b\}$ and $y \in Las_t(K)$. Then the following holds:

(a)
$$\operatorname{conv}(K \cap \{0,1\}^n) = \operatorname{Las}_n^{\operatorname{proj}}(K) \subseteq \ldots \subseteq \operatorname{Las}_0^{\operatorname{proj}}(K) \subseteq K.$$

(b) We have $0 \le y_I \le y_J \le 1$ for all $I \supseteq J$ with $0 \le |J| \le |I| \le t$.

(c) Let $I \subseteq [n]$ with $|I| \leq t$. Then

$$K \cap \{ x \in \mathbb{R}^n \mid x_i = 1 \ \forall i \in I \} = \emptyset \implies y_I = 0.$$

(d) Let $I \subseteq [n]$ with $|I| \leq t$. Then

$$y \in \operatorname{conv}(\{z \in \operatorname{Las}_{t-|I|}(K) \mid z_{\{i\}} \in \{0, 1\} \; \forall i \in I\}).$$

(e) Let $S \subseteq [n]$ be a subset of variables such that not many can be equal to 1 at the same time:

$$\max\{|I| : I \subseteq S; x \in K; x_i = 1 \ \forall i \in I\} \le k < t.$$

Then we have

$$y \in \operatorname{conv}(\{z \in \operatorname{Las}_{t-k}(K) \mid z_{\{i\}} \in \{0,1\} \; \forall i \in S\}).$$

(f) For any
$$|I| \le t$$
 we have $y_I = 1 \Leftrightarrow \bigwedge_{i \in I} (y_{\{i\}} = 1)$.
(g) For $|I| \le t$: $(\forall i \in I : y_{\{i\}} \in \{0, 1\}) \implies y_I = \prod_{i \in I} y_{\{i\}}$.
(h) Let $|I|, |J| \le t$ and $y_I = 1$. Then $y_{I \cup J} = y_J$.

Remark: Property (e) is very strong and does not hold for the Sherali-Adams or Lovász-Schrijver hierarchy. For example, it implies that after $t = O(\frac{1}{\varepsilon})$ rounds, the integrality gap for the KNAPSACK polytope is bounded by $1 + \varepsilon$ (taking *S* as all items that have profit at least $\varepsilon \cdot OPT$). Another example is that the INDEPENDENT SET polytope $\{x \in \mathbb{R}^V_+ \mid x_u + x_v \leq 1 \ \forall \{u, v\} \in E\}$ describes the integral hull after $\alpha(G)$ rounds of Lasserre.

Vector representation: For each event $\bigcap_{i \in I} (x_i = 1)$ with $|I| \leq t$ there is a vector v_I representing it in a consistent way:

L(Vector Representation Lemma):Let $y \in \text{LAs}_t(K)$. Then there is a family of vectors $(\mathbf{v}_I)_{|I| \leq t}$ such that $\langle \mathbf{v}_I, \mathbf{v}_J \rangle = y_{I \cup J}$ for all $|I|, |J| \leq t$. In particular $\|\mathbf{v}_I\|_2^2 = y_I$ and $\|\mathbf{v}_{\emptyset}\|_2^2 = 1$.

The linear program

Idea: Send a unit flow from the root to each terminal $s \in X$ (represented by variables $f_{s,e}$). On each edge we have to pay $y_e = \max\{f_{s,e}|s \in X\}$. We abbreviate $\delta^+(v)$ and $\delta^-(v)$ the edges outgoing and incoming to v, respectively. Also, $y(E') := \sum_{e \in E'} y_e$.

$$\min \sum_{e \in E} c_e y_e$$

$$\sum_{e \in \delta^+(v)} f_{s,e} - \sum_{e \in \delta^-(v)} f_{s,e} = \begin{cases} 1 & v = r \\ -1 & v = s \\ 0 & \text{otherwise} \end{cases} \quad \forall s \in X \; \forall v \in V$$

$$f_{s,e} \leq y_e \; \forall s \in X \; \forall e \in E$$

$$y(\delta^-(v)) \leq 1 \; \forall v \in V$$

$$0 \leq y_e \leq 1 \; \forall e \in E$$

$$0 \leq f_{s,e} \leq 1 \; \forall s \in X \; \forall e \in E$$

Lasserre strenghtening: Now we make the choice $t := 2\ell$. Our variable indices are $\mathcal{V}_t = \{(P,H) \mid P \subseteq E; H \subseteq X \times E; |P| + |H| \leq 2t + 2\}$ – that is $\operatorname{LAS}_t(K) \subseteq [0,1]^{\mathcal{V}_t}$. Let $Y = (Y_{P,H})_{(P,H) \in \mathcal{V}_t} \in \operatorname{LAS}_t(K)$ be an optimum solution for the Lasserre relaxation, which can be computed in time $n^{O(t)}$. We abbreviate $OPT_f := \sum_{e \in E} c_e y_{\{e\}}$ as the objective function value.

We will only address either groups of y_e variables (then we write $y_H := Y_{H,\emptyset}$ for $H \subseteq E$), or we address groups of $f_{s,e}$ variables for the same terminal $s \in X$. Then we write $f_{s,H} := Y_{\emptyset,\{(s,e)|e \in H\}}$.

The rounding algorithm

Idea: Sample a set T of paths from a distribution that depends on Y. Start at layer 0 and go through all layers and for each path P (ending in node u) that is sampled so far, extend it to $P \cup \{(u,v)\}$ with probability $\frac{y_{P \cup \{(u,v)\}}}{y_{P \cup \{(u,v)\}}}$.

(1) $T := \emptyset$

(2) FOR ALL e ∈ δ⁺(r) DO
(3) independently, with prob. y_{e}, add path {e} to T
(4) FOR j = 1,..., ℓ − 1 DO
(5) FOR ALL u ∈ V_j and all r-u paths P ∈ T DO
(6) FOR ALL e ∈ δ⁺(u) DO
(7) independently with prob. y_{P∪{e}}/y_P add P ∪ {e} to T

(8) return E(T).

Remark: We *do not* remove partial paths, because they will be useful in the analysis.

Notation: V(P) is the set of vertices on path P, E(T) the set of all edges on any path of T, V(T) all vertices of T.

Analysis

We will:

- (i) show that for each edge e the probability to be included is $\Pr[e \in E(T)] \le y_{\{e\}}.$
- (ii) prove that for each terminal $s \in X$, the probability to be connected by a path satisfies $\Pr[s \in V(T)] \ge \Omega(\frac{1}{\ell})$.

Part (i) provides that the expected cost for the sampled paths is at most OPT_f , while part (ii) implies that after repeating the sampling procedure $O(\ell \log |X|)$ times, each terminal will be connected to the root with high probability.

Upper bounding the expected cost

Notation: Let $Q(v) := \{P \mid P \text{ is } r\text{-}v \text{ path}\}$ be the set of paths from the root to v. For an edge e let Q(e) be the set of r-v paths that have e as last edge.

L(1):Let P be an r-v path with $v \in V$. Then $\Pr[P \in T] = y_P$.

Each edge e is sampled with probability at most $y_{\{e\}}$:

- **L**(2):For any edge $e \in E$, one has $\sum_{P \in Q(e)} y_P \leq y_{\{e\}}$.
- $\mathbf{P}(2){:}\mathrm{By}$ induction over the layers. Use Lasserre property (d) and (h).

L(3):Pr $[e \in E(T)] \leq y_{\{e\}}$ and $E[c(E(T))] \leq \sum_{e \in E} c_e y_{\{e\}}$

 $\mathbf{P}(3){:}\mathrm{Using}$ Lemmas 1 and 2 and linearity of expectation.

Lower bounding the success probability

- **L**(4):Fix a terminal $s \in X$ and an r-v path P' for some $v \in V$. Then
- a) $\sum_{\substack{P \in Q(s) \\ P \in Q(s): P' \subseteq P}} y_P = 1$ b) $\sum_{\substack{P \in Q(s): P' \subseteq P}} y_P \le y_{P'}.$

P(4):Consecutively using Lasserre properties (e), (b), (f).

Now fix a terminal $s \in X$ and let $Z := |T \cap Q(s)|$ be the r. v. that yields the number of sampled paths that end in s.

 $\mathbf{C}(5): E[Z] = 1$ $\mathbf{P}(5): By lemmas 1 and 4(a).$

Curiously, we have to prove an upper bound on Z in order to lower bound $\Pr[Z \geq 1].$

 $\mathbf{L}(6): E[Z|Z \ge 1] \le l+1$ $\mathbf{P}(6): By lemmas 1 and 4$

 $\mathbf{L}(7)$: $\Pr[Z \ge 1] \ge \frac{1}{l+1}$ P(7): By the law of total probability.

Our integrality gap is $O(\ell \log |X|)$:

T(8):Let $Y \in \text{Las}_t(K)$ be a given $t = 2\ell$ round Lasserre solution. Then one can compute a feasible solution $H \subseteq E$ with $E[c(H)] \leq O(\ell \log |X|) \cdot \sum_{e \in E} y_{\{e\}}$. The expected number of Lasserre queries and the expected overhead running time are both polynomial in n. **P**(8):Repeat the sampling algorithm for $2\ell \log |X|$ many times and let H be the union of the sampled paths.

 $\mathbf{C}(9)$: $|X|^{\epsilon}$ -apx algo in poly time, or take $\ell = \log |X| \Rightarrow O(\log^3 |X|)$ -apx in quasipoly $(n^{O(\log |X|)})$ time.

 \mathbf{Q} (Open): Is there a convex relaxation with polylog(|X|) integrality gap that can be solved in poly time? It would suffice to have a polynomial time oracle that takes a path $P \subseteq E$ and outputs the Lasserre entry y_P .