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We present an elementary, yet quite powerful, method of enumerating independent sets in graphs. We
illustrate this method with several applications.

The method (the Kleitman–Winston algorithm):

• For a graph G, let I(G) denote the family of all independent sets in G, let i(G) := |I(G)|, and let
α(G) be the largest cardinality of an element of I(G), usually called the independence number of G.
For m ∈ N, let i(G,m) be the number of independent sets in G that have precisely m elements.

• For A ⊆ V (G), let eG(A) denote the number |E(G[A])|.

• Let G be a graph with a fixed total order ≺ on V (G). For every A ⊆ V (G), the max-degree ordering of
A is the ordering (v1, . . . , v|A|) of all elements of A, where for each j ∈ {1, . . . , |A|}, vj is the maximum-
degree vertex in G[A \ {v1, . . . , vj−1}]. The ties are broken by giving preference to vertices that come
earlier in ≺.

• The algorithm: Suppose a graph G, an I ∈ I(G), and an integer q ≤ |I| are given. Set A := V (G)
and S := ∅. For s = 1, , . . . , q, do the following:

(a) Let (v1, . . . , v|A|) be the max-degree ordering of A.

(b) Let js be the minimal index j such that vj ∈ I.

(c) Move vjs from A to S.

(d) Delete v1, . . . , vjs−1 and NG(vjs) ∩A from A.

Output (j1, . . . , jq) and A ∩ I.

• For each output sequence (j1, . . . , jq) and every s ∈ [q], denote by A(j1, . . . , js) and S(j1, . . . , js) the
sets A and S at the end of the sth iteration of the algorithm (run on some input I that produces this
particular sequence (j1, . . . , jq)), respectively.

Lemma 1. Let G be a graph on n vertices and assume that an integer q and reals R and β ∈ [0, 1]
satisfy R ≥ (1 − β)qn. Suppose that the number of edges induced in G by every set U ⊆ V (G) with

|U | ≥ R satisfies eG(U) ≥ β
(|U |

2

)
. Then, for every integer m ≥ q, i(G,m) ≤

(
n
q

)(
R

m−q
)
.

Applications:

• Independent sets in regular graphs

Theorem 2 (A. A. Sapozhenko, 2001). There is an absolute constant C such that every n-vertex
d-regular graph G satisfies

i(G) ≤ 2

(
1+C
√

log d
d

)
n
2 .

• Sum-free sets

A set A of elements of an abelian group is called sum-free if there are no x, y, z ∈ A satisfying x+y = z.

Theorem 3 (N. Alon, 1991). The set [n] has at most 2(1/2+o(1))n sum-free subsets.

• The number of C4-free graphs

Call a graph C4-free if it does not contain a cycle of length four and let ex(n,C4) denote the maximum
number of edges in a C4-free graph with n vertices. Let fn(C4) be the number of (labeled) C4-free
graphs on the vertex set [n].



Theorem 4 (D. J. Kleitman and K. J. Winston, 1982). There is a positive constant C such that

log2 fn(C4) ≤ Cn3/2.

• Independent sets in regular graphs without small eigenvalues

Let λ1 ≥ · · · ≥ λn be the eigenvalues of the adjacency matrix of G. We use λ(G) to denote the smallest
eigenvalue λn of G.

Lemma 5 (N. Alon and F. R. K. Chung, 1988). Let G be an n-vertex d-regular graph. For all A ⊆
V (G),

2eG(A) ≥ d

n
|A|2 +

λ(G)

n
|A|(n− |A|).

Theorem 6 (N. Alon, J. Balogh, R. Morris, W. Samotij, 2014). For every ε > 0, there exists a constant
C such that the following holds. If G is an n-vertex d-regular graph with λ(G) ≥ −λ, then

i(G,m) ≤
(( λ

d+λ + ε
)
n

m

)
,

provided that m ≥ Cn/d.

• Roth’s theorem in random sets

Given a positive δ, we shall say that a set A ⊆ Z is δ-Roth if each B ⊆ A satisfying |B| ≥ δ|A| contains
3-term arithmetic progression (3-term AP). A theorem of Roth asserts that for every δ > 0 there exists
an n0 such that the set [n] is δ-Roth whenever n ≥ n0.

Theorem 7 (Y. Kohayakawa, T. Luczak, V. Rödl, 1996). For every δ > 0, there exists a constant C
such that if C

√
n ≤ m ≤ n, then the probability that a uniformly chosen random m-element subset of

[n] is δ-Roth tends to 1 as n→∞.

Theorem 8. For every positive ε, there exists a constant D such that if D
√
n ≤ m ≤ n,

|{A ⊆ [n] : |A| = m and A contains no 3-term AP}| ≤
(
εn

m

)
.

Proposition 9 (P. Varnavides, 1959). For every δ > 0 there exist an integer n0 and β > 0 such that
if n ≥ n0, then every set of at least δn integers from [n] contains at least βn2 3-term APs.


