Counting independent sets in graphs

by Wojciech Samotij
presented by Martin Balko

We present an elementary, yet quite powerful, method of enumerating independent sets in graphs. We illustrate this method with several applications.

The method (the Kleitman-Winston algorithm):

- For a graph G, let $\mathcal{I}(G)$ denote the family of all independent sets in G, let $i(G):=|\mathcal{I}(G)|$, and let $\alpha(G)$ be the largest cardinality of an element of $\mathcal{I}(G)$, usually called the independence number of G. For $m \in \mathbb{N}$, let $i(G, m)$ be the number of independent sets in G that have precisely m elements.
- For $A \subseteq V(G)$, let $e_{G}(A)$ denote the number $|E(G[A])|$.
- Let G be a graph with a fixed total order \prec on $V(G)$. For every $A \subseteq V(G)$, the max-degree ordering of A is the ordering $\left(v_{1}, \ldots, v_{|A|}\right)$ of all elements of A, where for each $j \in\{1, \ldots,|A|\}, v_{j}$ is the maximumdegree vertex in $G\left[A \backslash\left\{v_{1}, \ldots, v_{j-1}\right\}\right]$. The ties are broken by giving preference to vertices that come earlier in \prec.
- The algorithm: Suppose a graph G, an $I \in \mathcal{I}(G)$, and an integer $q \leq|I|$ are given. Set $A:=V(G)$ and $S:=\emptyset$. For $s=1, \ldots, q$, do the following:
(a) Let $\left(v_{1}, \ldots, v_{|A|}\right)$ be the max-degree ordering of A.
(b) Let j_{s} be the minimal index j such that $v_{j} \in I$.
(c) Move $v_{j_{s}}$ from A to S.
(d) Delete $v_{1}, \ldots, v_{j_{s}-1}$ and $N_{G}\left(v_{j_{s}}\right) \cap A$ from A.

Output $\left(j_{1}, \ldots, j_{q}\right)$ and $A \cap I$.

- For each output sequence $\left(j_{1}, \ldots, j_{q}\right)$ and every $s \in[q]$, denote by $A\left(j_{1}, \ldots, j_{s}\right)$ and $S\left(j_{1}, \ldots, j_{s}\right)$ the sets A and S at the end of the s th iteration of the algorithm (run on some input I that produces this particular sequence $\left.\left(j_{1}, \ldots, j_{q}\right)\right)$, respectively.

Lemma 1. Let G be a graph on n vertices and assume that an integer q and reals R and $\beta \in[0,1]$ satisfy $R \geq(1-\beta)^{q} n$. Suppose that the number of edges induced in G by every set $U \subseteq V(G)$ with $|U| \geq R$ satisfies $e_{G}(U) \geq \beta\binom{|U|}{2}$. Then, for every integer $m \geq q, i(G, m) \leq\binom{ n}{q}\binom{R}{m-q}$.

Applications:

- Independent sets in regular graphs

Theorem 2 (A. A. Sapozhenko, 2001). There is an absolute constant C such that every n-vertex d-regular graph G satisfies

$$
i(G) \leq 2^{\left(1+C \sqrt{\frac{\log d}{d}}\right) \frac{n}{2}}
$$

- Sum-free sets

A set A of elements of an abelian group is called sum-free if there are no $x, y, z \in A$ satisfying $x+y=z$.
Theorem 3 (N . Alon, 1991). The set $[n]$ has at most $2^{(1 / 2+o(1)) n}$ sum-free subsets.

- The number of C_{4}-free graphs

Call a graph C_{4}-free if it does not contain a cycle of length four and let ex $\left(n, C_{4}\right)$ denote the maximum number of edges in a C_{4}-free graph with n vertices. Let $f_{n}\left(C_{4}\right)$ be the number of (labeled) C_{4}-free graphs on the vertex set $[n]$.

Theorem 4 (D. J. Kleitman and K. J. Winston, 1982). There is a positive constant C such that

$$
\log _{2} f_{n}\left(C_{4}\right) \leq C n^{3 / 2}
$$

- Independent sets in regular graphs without small eigenvalues

Let $\lambda_{1} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of the adjacency matrix of G. We use $\lambda(G)$ to denote the smallest eigenvalue λ_{n} of G.

Lemma 5 (N. Alon and F. R. K. Chung, 1988). Let G be an n-vertex d-regular graph. For all $A \subseteq$ $V(G)$,

$$
2 e_{G}(A) \geq \frac{d}{n}|A|^{2}+\frac{\lambda(G)}{n}|A|(n-|A|)
$$

Theorem 6 (N. Alon, J. Balogh, R. Morris, W. Samotij, 2014). For every $\varepsilon>0$, there exists a constant C such that the following holds. If G is an n-vertex d-regular graph with $\lambda(G) \geq-\lambda$, then

$$
i(G, m) \leq\binom{\left(\frac{\lambda}{d+\lambda}+\varepsilon\right) n}{m}
$$

provided that $m \geq C n / d$.

- Roth's theorem in random sets

Given a positive δ, we shall say that a set $A \subseteq \mathbb{Z}$ is δ-Roth if each $B \subseteq A$ satisfying $|B| \geq \delta|A|$ contains 3 -term arithmetic progression (3-term AP). A theorem of Roth asserts that for every $\delta>0$ there exists an n_{0} such that the set $[n]$ is δ-Roth whenever $n \geq n_{0}$.

Theorem 7 (Y. Kohayakawa, T. Luczak, V. Rödl, 1996). For every $\delta>0$, there exists a constant C such that if $C \sqrt{n} \leq m \leq n$, then the probability that a uniformly chosen random m-element subset of $[n]$ is δ-Roth tends to 1 as $n \rightarrow \infty$.

Theorem 8. For every positive ε, there exists a constant D such that if $D \sqrt{n} \leq m \leq n$,

$$
\mid\{A \subseteq[n]:|A|=m \text { and } A \text { contains no 3-term } A P\} \left\lvert\, \leq\binom{\varepsilon n}{m}\right.
$$

Proposition 9 (P. Varnavides, 1959). For every $\delta>0$ there exist an integer n_{0} and $\beta>0$ such that if $n \geq n_{0}$, then every set of at least δn integers from $[n]$ contains at least βn^{2} 3-term APs.

