A semi-algebraic version of Zarankiewicz's problem

by Jacob Fox, János Pach, Adam Sheffer, Andrew Suk, and Joshua Zahl

presented by Martin Balko

We discuss semi-algebraic graphs and hypergraphs and show that some of the most important results in extremal combinatorics can be substantially strengthened when restricted to semi-algebraic hypergraphs. In particular, we discuss such a strengthening of the Kövári-Sós-Turán theorem.

- A hypergraph H = (P, E) is called *r*-partite if it is *r*-uniform and *P* is partitioned into *r* parts, $P = P_1 \cup \cdots \cup P_r$, such that every edge has precisely one vertex in each part.
- An r-partite hypergraph $H = (P_1 \cup \cdots \cup P_r, E)$ is called *semi-algebraic* in $(\mathbb{R}^{d_1}, \ldots, \mathbb{R}^{d_r}), d = \sum_{i=1}^r d_i$, if there are polynomials $f_1, \ldots, f_t \in \mathbb{R}[x_1, \ldots, x_d]$ and a boolean function $\Phi(X_1, \ldots, X_t)$ such that for every $(p_1, \ldots, p_r) \in P_1 \times \cdots P_r \subset \mathbb{R}^d$, we have $(p_1, \ldots, p_r) \in E \Leftrightarrow \Phi(f_1(p_1, \ldots, p_r) \geq 0; \ldots; f_t(p_1, \ldots, p_r) \geq 0) = 1$.
- If our r-uniform hypergraph H = (P, E) is a priori not r-partite, we fix an enumeration p_1, p_2, \ldots of the elements of $P \subset \mathbb{R}^d$, and say that H is *semi-algebraic* if for every $1 \leq i_1 < \cdots < i_r \leq n$, $(p_{i_1}, \ldots, p_{i_r}) \in E \Leftrightarrow \Phi(f_1(p_{i_1}, \ldots, p_{i_r}) \geq 0; \ldots; f_t(p_{i_1}, \ldots, p_{i_r}) \geq 0) = 1$, where Φ is a boolean function and f_1, \ldots, f_t are polynomials satisfying the same properties as above.
- We say that the E has description complexity at most t if E can be described with at most t polynomial equations and inequalities, and each of them has degree at most t.

Ramsey's Theorem. The Ramsey number $R_k(n)$ of the complete k-uniform hypergraph on n vertices satisfies $\operatorname{twr}_{k-1}(cn^2) \leq R_k(n) < \operatorname{twr}_k(c'n)$ where the tower function $\operatorname{twr}_k(x)$ is defined by $\operatorname{twr}_1(x) = x$ and $\operatorname{twr}_i(x) = 2^{\operatorname{twr}_{i-1}(x)}$ for $i \geq 2$.

Semi-algebraic setting: Let $\mathbb{R}_{k}^{d,t}(n)$ be the minimum N such that every semi-algebraic k-uniform hypergraph H = (P, E) of description complexity t contains $P' \subseteq P$ of size n such that $\binom{P'}{k} \subseteq E$ or $\binom{P'}{k} \cap E = \emptyset$. For $k \geq 2$ and $d, t \geq 1$, $\mathbb{R}_{k}^{d,t}(n) \leq \operatorname{twr}_{k-1}(n^{c_1})$ where $c_1 = c_1(d, k, t)$.

Szemerédi's Regularity Lemma. For every $\varepsilon > 0$ there is $K = K(\varepsilon)$ such that every graph has an equitable vertex partition into at most K parts such that all but at most an ε fraction of the pairs are ε -regular.

Semi-algebraic setting: For any positive integers r, d, t, D there exists a constant c = c(r, d, t, D) > 0with the following property. Let $0 < \varepsilon < 1/2$ and H = (P, E) be an r-uniform semi-algebraic hypergraph in \mathbb{R}^d with complexity (t, D). Then P has an equitable partition $P = P_1 \cup \cdots \cup P_K$ into at most $K \leq (1/\varepsilon)^c$ parts such that all but an ε -fraction of the r-tuples of parts are homogeneous in the sense that either $P_{i_1} \times \cdots \times P_{i_r} \subseteq E$ or $P_{i_1} \times \cdots \times P_{i_r} \cap E = \emptyset$.

Zarankiewicz's Problem. What is the maximum number of edges in a $K_{k,k}$ -free bipartite graph G = (P,Q,E) with |P| = m and |Q| = n?

Kövári-Sós-Turán Theorem: Every bipartite graph G = (P, Q, E), |P| = m, |Q| = n, which does not contain $K_{k,k}$ satisfies $|E(G)| < c_k(mn^{1-1/k} + n)$ where c_k depends on k.

Semi-algebraic setting: Let G = (P, Q, E) be a semi-algebraic bipartite graph in $(\mathbb{R}^{d_1}, \mathbb{R}^{d_2})$ such that E has description complexity at most t, |P| = m, and |Q| = n. If G is $K_{k,k}$ -free, then

$$|E(G)| \le c_1 \left((mn)^{2/3} + m + n \right) \quad \text{for } d_1 = d_2 = 2,$$

and more generally,

$$|E(G)| \le c_3 \left(m^{\frac{d_2(d_1-1)}{d_1d_2-1} + \varepsilon} n^{\frac{d_1(d_2-1)}{d_1d_2-1}} + m + n \right) \quad \text{for all } d_1, d_2$$

Here, ε is an arbitrary small constant and $c_1 = c_1(t,k)$ and $c_3 = c_3(d_1, d_2, t, k, \varepsilon)$.

Proof of the semi-algebraic version of the Kövári-Sós-Turán Theorem:

- For a bipartite graph G = (P, Q, E), let $\mathcal{F} = \{N_G(q) \subseteq P : q \in Q\}$ be a set system with ground set P and let the *dual* of (P, \mathcal{F}) be the set system $(\mathcal{F}, \mathcal{F}^*)$ where $\mathcal{F}^* = \{\{A \in \mathcal{F} : p \in A\} : p \in P\}$.
- The VC dimension of (P, \mathcal{F}) is the largest integer d_0 for which there exists a d_0 -element set $S \subseteq P$ such that for every $B \subseteq S$, one can find a member $A \in \mathcal{F}$ with $A \cap S = B$.
- The primal shatter function of (P, \mathcal{F}) is defined as $\pi_{\mathcal{F}}(z) = \max_{P' \subset P, |P'|=z} |\{A \cap P' : A \in \mathcal{F}\}|.$

Theorem 1. Let G = (P,Q,E) be a bipartite graph with |P| = m and |Q| = n, such that the set system $\mathcal{F}_1 = \{N(q): q \in Q\}$ satisfies $\pi_{\mathcal{F}_1}(z) \leq cz^d$ for all z. Then if G is $K_{k,k}$ -free, we have $|E(G)| \leq c_1(mn^{1-1/d} + n)$, where $c_1 = c_1(c, d, k)$.

Theorem 2 (Milnor-Thom). Let f_1, \ldots, f_ℓ be d-variate real polynomials of degree at most t. The number of cells in the arrangement of their zero-sets $V_1, \ldots, V_\ell \subseteq \mathbb{R}^d$ is at most $\left(\frac{50t\ell}{d}\right)^d$ for $\ell \ge d \ge 2$.

Corollary 3. Let G = (P, Q, E) be a bipartite semi-algebraic graph in $(\mathbb{R}^{d_1}, \mathbb{R}^{d_2})$ with |P| = m and |Q| = n, such that E has complexity at most t. If G is $K_{k,k}$ -free, then $|E(G)| \leq c'(mn^{1-1/d_2}+n)$ where $c' = c'(d_1, d_2, t, k)$.

• The distance between two sets $A_1, A_2 \in \mathcal{F}$ is $|A_1 \Delta A_2| = |(A_1 \cup A_2) \setminus (A_1 \cap A_2)|$. The unit distance graph $UD(\mathcal{F})$ is the graph with vertex set \mathcal{F} , and its edges are pairs of sets (A_1, A_2) that have distance one.

Lemma 4 (Haussler). If \mathcal{F} is a set system of VC-dimension d_0 on a ground set P, then the unit distance graph $UD(\mathcal{F})$ has at most $d_0|\mathcal{F}|$ edges.

• We say that the set system \mathcal{F} is (k, δ) -separated if among any k sets $A_1, \ldots, A_k \in \mathcal{F}$ we have

$$|(A_1 \cup \cdots \cup A_k) \setminus (A_1 \cap \cdots \cap A_k)| \ge \delta.$$

Lemma 5 (Packing lemma). Let \mathcal{F} be a set system on a ground set P such that |P| = m and $\pi_{\mathcal{F}}(z) \leq cz^d$ for all z. If \mathcal{F} is (k, δ) -separated, then $\mathcal{F} \leq c'(m/\delta)^d$ where c' = c'(c, d, k).

• Let $\mathcal{F}_1 = \{N_G(q) : q \in Q\}$ and $\mathcal{F}_2 = \{N_G(p) : p \in P\}$. Given a set of k points $\{q_1, \ldots, q_k\} \subseteq Q$, we say that a set $B \in \mathcal{F}_2$ crosses $\{q_1, \ldots, q_k\}$ if $\{q_1, \ldots, q_k\} \cap B \neq \emptyset$ and $\{q_1, \ldots, q_k\} \not\subseteq B$.

Observation 6. There exists k points $q_1, \ldots, q_k \in Q$ such that at most $2c'm/n^{1/d}$ sets from \mathcal{F}_2 cross $\{q_1, \ldots, q_k\}$, where c' is defined as in Lemma 5.

Applications:

• Incidences with algebraic varieties in \mathbb{R}^d

Theorem 7. Let P be a set of m points and let V be a set of n constant-degree algebraic varieties, both in \mathbb{R}^d , such that the incidence graph of $P \times V$ does not contain a copy of $K_{s,t}$ (here we think of s,t, and d as being fixed constants, and m and n are large). Then for every $\varepsilon > 0$, we have

$$I(P, \mathcal{V}) = O\left(m^{\frac{(d-1)s}{ds-1} + \varepsilon} n^{\frac{d(s-1)}{ds-1}} + m + n\right).$$

• Unit distances in \mathbb{R}^d

Theorem 8. Let P be a set of n points in \mathbb{R}^d , so that every (d-3)-dimensional sphere contains fewer than k points (for some constant k). Then, for any $\varepsilon > 0$, the number of unit distances spanned by P is $O(n^{2d/(d+1)+\varepsilon})$.

• A variant for semi-algebraic hypergraphs

Corollary 9. Let $G = (P_1, \ldots, P_r, E)$ be an *r*-partite semi-algebraic hypergraph in $(\mathbb{R}^{d_1}, \ldots, \mathbb{R}^{d_r})$, such that *E* has description complexity at most *t*. For any subset $S \subseteq \{1, 2, \ldots, r\}$, we set $m = m(S) = \prod_{i \notin S} |P_i|$, $n = n(S) = \prod_{i \notin S} |P_i|$, $D_1 = D_1(S) = |S|$, and $D_2 = D_2(S) = r - |S|$. If *G* is $K_{k,\ldots,k}$ -free, then

$$|E(G)| \le \min_{\emptyset \neq S \subset \{1,2,\dots,r\}} \left\{ c_3 \left(m^{\frac{D_2(D_1-1)}{D_1 D_2 - 1} + \varepsilon} n^{\frac{D_1(D_2-1)}{D_1 D_2 - 1}} + m + n \right) \right\}.$$

Here, ε is an arbitrarily small constant and $c_3 = c_3(d_1, \ldots, d_r, t, k, \varepsilon)$.