A semi-algebraic version of Zarankiewicz's problem

by Jacob Fox, János Pach, Adam Sheffer, Andrew Suk, and Joshua Zahl

presented by Martin Balko

We discuss semi-algebraic graphs and hypergraphs and show that some of the most important results in extremal combinatorics can be substantially strengthened when restricted to semi-algebraic hypergraphs. In particular, we discuss such a strengthening of the Kövári-Sós-Turán theorem.

- A hypergraph $H=(P, E)$ is called r-partite if it is r-uniform and P is partitioned into r parts, $P=P_{1} \cup \cdots \cup P_{r}$, such that every edge has precisely one vertex in each part.
- An r-partite hypergraph $H=\left(P_{1} \cup \cdots \cup P_{r}, E\right)$ is called semi-algebraic in $\left(\mathbb{R}^{d_{1}}, \ldots, \mathbb{R}^{d_{r}}\right)$, $d=$ $\sum_{i=1}^{r} d_{i}$, if there are polynomials $f_{1}, \ldots, f_{t} \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$ and a boolean function $\Phi\left(X_{1}, \ldots, X_{t}\right)$ such that for every $\left(p_{1}, \ldots, p_{r}\right) \in P_{1} \times \cdots P_{r} \subset \mathbb{R}^{d}$, we have $\left(p_{1}, \ldots, p_{r}\right) \in E \Leftrightarrow \Phi\left(f_{1}\left(p_{1}, \ldots, p_{r}\right) \geq\right.$ $\left.0 ; \ldots ; f_{t}\left(p_{1}, \ldots, p_{r}\right) \geq 0\right)=1$.
- If our r-uniform hypergraph $H=(P, E)$ is a priori not r-partite, we fix an enumeration p_{1}, p_{2}, \ldots of the elements of $P \subset \mathbb{R}^{d}$, and say that H is semi-algebraic if for every $1 \leq i_{1}<\cdots<i_{r} \leq n$, $\left(p_{i_{1}}, \ldots, p_{i_{r}}\right) \in E \Leftrightarrow \Phi\left(f_{1}\left(p_{i_{1}}, \ldots, p_{i_{r}}\right) \geq 0 ; \ldots ; f_{t}\left(p_{i_{1}}, \ldots, p_{i_{r}}\right) \geq 0\right)=1$, where Φ is a boolean function and f_{1}, \ldots, f_{t} are polynomials satisfying the same properties as above.
- We say that the E has description complexity at most t if E can be described with at most t polynomial equations and inequalities, and each of them has degree at most t.

Ramsey's Theorem. The Ramsey number $\mathrm{R}_{k}(n)$ of the complete k-uniform hypergraph on n vertices satisfies $\operatorname{twr}_{k-1}\left(c n^{2}\right) \leq \mathrm{R}_{k}(n)<\operatorname{twr}_{k}\left(c^{\prime} n\right)$ where the tower function $\operatorname{twr}_{k}(x)$ is defined by $\operatorname{twr}_{1}(x)=x$ and $\operatorname{twr}_{i}(x)=2^{\operatorname{twr}_{i-1}(x)}$ for $i \geq 2$.

Semi-algebraic setting: Let $\mathrm{R}_{k}^{d, t}(n)$ be the minimum N such that every semi-algebraic k-uniform hypergraph $H=(P, E)$ of description complexity t contains $P^{\prime} \subseteq P$ of size n such that $\binom{P^{\prime}}{k} \subseteq E$ or $\binom{P^{\prime}}{k} \cap E=\emptyset$. For $k \geq 2$ and $d, t \geq 1, \mathrm{R}_{k}^{d, t}(n) \leq \operatorname{twr}_{k-1}\left(n^{c_{1}}\right)$ where $c_{1}=c_{1}(d, k, t)$.

Szemerédi's Regularity Lemma. For every $\varepsilon>0$ there is $K=K(\varepsilon)$ such that every graph has an equitable vertex partition into at most K parts such that all but at most an ε fraction of the pairs are ε-regular.

Semi-algebraic setting: For any positive integers r, d, t, D there exists a constant $c=c(r, d, t, D)>0$ with the following property. Let $0<\varepsilon<1 / 2$ and $H=(P, E)$ be an r-uniform semi-algebraic hypergraph in \mathbb{R}^{d} with complexity (t, D). Then P has an equitable partition $P=P_{1} \cup \cdots \cup P_{K}$ into at most $K \leq(1 / \varepsilon)^{c}$ parts such that all but an ε-fraction of the r-tuples of parts are homogeneous in the sense that either $P_{i_{1}} \times \cdots \times P_{i_{r}} \subseteq E$ or $P_{i_{1}} \times \cdots \times P_{i_{r}} \cap E=\emptyset$.

Zarankiewicz's Problem. What is the maximum number of edges in a $K_{k, k}$-free bipartite graph $G=$ (P, Q, E) with $|P|=m$ and $|Q|=n$?

Kövári-Sós-Turán Theorem: Every bipartite graph $G=(P, Q, E),|P|=m,|Q|=n$, which does not contain $K_{k, k}$ satisfies $|E(G)|<c_{k}\left(m n^{1-1 / k}+n\right)$ where c_{k} depends on k.

Semi-algebraic setting: Let $G=(P, Q, E)$ be a semi-algebraic bipartite graph in $\left(\mathbb{R}^{d_{1}}, \mathbb{R}^{d_{2}}\right)$ such that E has description complexity at most $t,|P|=m$, and $|Q|=n$. If G is $K_{k, k}$-free, then

$$
|E(G)| \leq c_{1}\left((m n)^{2 / 3}+m+n\right) \quad \text { for } d_{1}=d_{2}=2
$$

and more generally,

$$
|E(G)| \leq c_{3}\left(m^{\frac{d_{2}\left(d_{1}-1\right)}{d_{1} d_{2}-1}+\varepsilon} n^{\frac{d_{1}\left(d_{2}-1\right)}{d_{1} d_{2}-1}}+m+n\right) \quad \text { for all } d_{1}, d_{2}
$$

Here, ε is an arbitrary small constant and $c_{1}=c_{1}(t, k)$ and $c_{3}=c_{3}\left(d_{1}, d_{2}, t, k, \varepsilon\right)$.

Proof of the semi-algebraic version of the Kövári-Sós-Turán Theorem:

- For a bipartite graph $G=(P, Q, E)$, let $\mathcal{F}=\left\{N_{G}(q) \subseteq P: q \in Q\right\}$ be a set system with ground set P and let the dual of (P, \mathcal{F}) be the set system $\left(\mathcal{F}, \mathcal{F}^{*}\right)$ where $\mathcal{F}^{*}=\{\{A \in \mathcal{F}: p \in A\}: p \in P\}$.
- The $V C$ dimension of (P, \mathcal{F}) is the largest integer d_{0} for which there exists a d_{0}-element set $S \subseteq P$ such that for every $B \subseteq S$, one can find a member $A \in \mathcal{F}$ with $A \cap S=B$.
- The primal shatter function of (P, \mathcal{F}) is defined as $\pi_{\mathcal{F}}(z)=\max _{P^{\prime} \subseteq P,\left|P^{\prime}\right|=z}\left|\left\{A \cap P^{\prime}: A \in \mathcal{F}\right\}\right|$.

Theorem 1. Let $G=(P, Q, E)$ be a bipartite graph with $|P|=m$ and $|Q|=n$, such that the set system $\mathcal{F}_{1}=\{N(q): q \in Q\}$ satisfies $\pi_{\mathcal{F}_{1}}(z) \leq c z^{d}$ for all z. Then if G is $K_{k, k}$-free, we have $|E(G)| \leq c_{1}\left(m n^{1-1 / d}+n\right)$, where $c_{1}=c_{1}(c, d, k)$.

Theorem 2 (Milnor-Thom). Let f_{1}, \ldots, f_{ℓ} be d-variate real polynomials of degree at most t. The number of cells in the arrangement of their zero-sets $V_{1}, \ldots, V_{\ell} \subseteq \mathbb{R}^{d}$ is at most $\left(\frac{50 t \ell}{d}\right)^{d}$ for $\ell \geq d \geq 2$.
Corollary 3. Let $G=(P, Q, E)$ be a bipartite semi-algebraic graph in $\left(\mathbb{R}^{d_{1}}, \mathbb{R}^{d_{2}}\right)$ with $|P|=m$ and $|Q|=n$, such that E has complexity at most t. If G is $K_{k, k}$-free, then $|E(G)| \leq c^{\prime}\left(m n^{1-1 / d_{2}}+n\right)$ where $c^{\prime}=c^{\prime}\left(d_{1}, d_{2}, t, k\right)$.

- The distance between two sets $A_{1}, A_{2} \in \mathcal{F}$ is $\left|A_{1} \Delta A_{2}\right|=\left|\left(A_{1} \cup A_{2}\right) \backslash\left(A_{1} \cap A_{2}\right)\right|$. The unit distance graph $U D(\mathcal{F})$ is the graph with vertex set \mathcal{F}, and its edges are pairs of sets $\left(A_{1}, A_{2}\right)$ that have distance one.

Lemma 4 (Haussler). If \mathcal{F} is a set system of $V C$-dimension d_{0} on a ground set P, then the unit distance graph $U D(\mathcal{F})$ has at most $d_{0}|\mathcal{F}|$ edges.

- We say that the set system \mathcal{F} is (k, δ)-separated if among any k sets $A_{1}, \ldots, A_{k} \in \mathcal{F}$ we have

$$
\left|\left(A_{1} \cup \cdots \cup A_{k}\right) \backslash\left(A_{1} \cap \cdots \cap A_{k}\right)\right| \geq \delta
$$

Lemma 5 (Packing lemma). Let \mathcal{F} be a set system on a ground set P such that $|P|=m$ and $\pi_{\mathcal{F}}(z) \leq c z^{d}$ for all z. If \mathcal{F} is (k, δ)-separated, then $\mathcal{F} \leq c^{\prime}(m / \delta)^{d}$ where $c^{\prime}=c^{\prime}(c, d, k)$.

- Let $\mathcal{F}_{1}=\left\{N_{G}(q): q \in Q\right\}$ and $\mathcal{F}_{2}=\left\{N_{G}(p): p \in P\right\}$. Given a set of k points $\left\{q_{1}, \ldots, q_{k}\right\} \subseteq Q$, we say that a set $B \in \mathcal{F}_{2}$ crosses $\left\{q_{1}, \ldots, q_{k}\right\}$ if $\left\{q_{1}, \ldots, q_{k}\right\} \cap B \neq \emptyset$ and $\left\{q_{1}, \ldots, q_{k}\right\} \nsubseteq B$.

Observation 6. There exists k points $q_{1}, \ldots, q_{k} \in Q$ such that at most $2 c^{\prime} m / n^{1 / d}$ sets from \mathcal{F}_{2} cross $\left\{q_{1}, \ldots, q_{k}\right\}$, where c^{\prime} is defined as in Lemma 5 .

Applications:

- Incidences with algebraic varieties in \mathbb{R}^{d}

Theorem 7. Let P be a set of m points and let \mathcal{V} be a set of n constant-degree algebraic varieties, both in \mathbb{R}^{d}, such that the incidence graph of $P \times \mathcal{V}$ does not contain a copy of $K_{s, t}$ (here we think of s, t, and d as being fixed constants, and m and n are large). Then for every $\varepsilon>0$, we have

$$
I(P, \mathcal{V})=O\left(m^{\frac{(d-1) s}{d s-1}+\varepsilon} n^{\frac{d(s-1)}{d s-1}}+m+n\right)
$$

- Unit distances in \mathbb{R}^{d}

Theorem 8. Let P be a set of n points in \mathbb{R}^{d}, so that every $(d-3)$-dimensional sphere contains fewer than k points (for some constant k). Then, for any $\varepsilon>0$, the number of unit distances spanned by P is $O\left(n^{2 d /(d+1)+\varepsilon}\right)$.

- A variant for semi-algebraic hypergraphs

Corollary 9. Let $G=\left(P_{1}, \ldots, P_{r}, E\right)$ be an r-partite semi-algebraic hypergraph in $\left(\mathbb{R}^{d_{1}}, \ldots, \mathbb{R}^{d_{r}}\right)$, such that E has description complexity at most t. For any subset $S \subseteq\{1,2, \ldots, r\}$, we set $m=m(S)=$ $\prod_{i \in S}\left|P_{i}\right|, n=n(S)=\prod_{i \notin S}\left|P_{i}\right|, D_{1}=D_{1}(S)=|S|$, and $D_{2}=D_{2}(S)=r-|S|$. If G is $K_{k, \ldots, k}$-free, then

$$
|E(G)| \leq \min _{\emptyset \neq S \subset\{1,2, \ldots, r\}}\left\{c_{3}\left(m^{\frac{D_{2}\left(D_{1}-1\right)}{D_{1} D_{2}-1}+\varepsilon} n^{\frac{D_{1}\left(D_{2}-1\right)}{D_{1} D_{2}-1}}+m+n\right)\right\}
$$

Here, ε is an arbitrarily small constant and $c_{3}=c_{3}\left(d_{1}, \ldots, d_{r}, t, k, \varepsilon\right)$.

