Tomáš Masařík

masarik@kam.mff.cuni.cz

Presented paper by Zeev Dvir, Sivakanth Gopi

2-server PIR with sub-polynomial communication

Definitions

Definition PIR A *k*-server Private Information Retrieval (PIR) is triplet of algorithms: $(\mathcal{Q}, \mathcal{A}, \mathcal{R})$.

- At the beginning user obtains a random string r, i position of bit and invokes queries q_1, \ldots, q_k using algorithm $(q_1, \ldots, q_k) = \mathcal{Q}(i, r)$.
- Then sends q_j to *j*th server (with database *D*) which responds with an answer a_j using algorithm $a_j = \mathcal{A}(j, D, q_j)$.
- Finally, user computes value of *i*th bit of the database D using algorithm $D_i = \mathcal{R}(a_1, \ldots, a_k, i, r)$.

The important thing is **privacy**: each server learns no information about *i*. For any fixed server *j* the distribution over random strings *r* of $q_j = (i, r)$ is identical for every *i*.

The communication cost of that protocol is worst case number of bits exchanged between the user and the servers.

Theorem [Main result] There exists a 2-server PIR with communication cost $n^{o(1)}$.

Definition [Matching vector family] S-Matching vector family is a pair $(\mathcal{U}, \mathcal{V})$ of *n*-tuples, each of them is a k dimensional vector.

Such that $\langle u_i, u_j \rangle = 0$ iff i = j and $\langle u_i, u_j \rangle \in S$ iff $i \neq j$.

Theorem [Matching vector family construction (Grolmusz 99)] There is an explicit constructible S-matching vector family in Z_6^k of size $n \ge \exp(\Omega(\frac{(\log k)^2}{\log \log k}))$ with $S = \{1, 3, 4\}$