Tight lower bounds for the size of epsilon-nets

János Pach, Gábor Tardos

Introduction

Couple (X, \mathcal{R}) is called range space in universe \mathcal{U} if $X \subset \mathcal{U}$ is a finite set and $\mathcal{R} \subset 2^{\mathcal{U}}$ is a system of sets. The set $A \subset X$ is called shattered if for every $B \subset A$ there is a set $R_{B} \in \mathcal{R}$ such that $R_{B} \cap A=B$. The size of the largest shattered subset of X is called the dimension of the range space (X, \mathcal{R}).

For every $\varepsilon>0$, the set $S \subset X$ is called the ε-net for the range space (X, \mathcal{R}) if every range $R \in \mathcal{R}$ with $|R \cap X| \geq \varepsilon|X|$ contains at least one element of S.
Theorem (Matoušek, Seidl, Welzl, 1990-2) All range spaces (X, \mathcal{R}), where X is a finite set of points in \mathbb{R}^{3} and \mathcal{R} consists of half-spaces, admit ε-nets of size $O\left(\frac{1}{\varepsilon}\right)$.
Theorem (Aronov, Ezra, Sharir, 2010) All range spaces (X, \mathcal{R}), where X is a finite set of points in $\mathbb{R}^{2}\left(\right.$ or $\left.\mathbb{R}^{3}\right)$ and \mathcal{R} consists of axis-parallel rectangles (boxes), admit ε-nets of size $O\left(\frac{1}{\varepsilon} \log \log \frac{1}{\varepsilon}\right)$.

Let (X, \mathcal{R}) be a range space with ranges from \mathbb{R}^{m}. The dual range space $\left(\mathbb{R}, \cup_{x \in \mathbb{R}^{m}} \mathcal{R}_{x}\right)$ is defined as a system on the underlying set \mathcal{R} consisting of the sets $\mathcal{R}_{x}=\{R \mid x \in R \in \mathcal{R}\}$, for all $x \in \mathbb{R}^{m}$.

Main results

Theorem 1 For any $\varepsilon>0$ and for any sufficiently large integer $n \geq n_{0}(\varepsilon)$, there exists a dual range space \sum^{*} of VC-dimension 2 , induced by n axis-parallel rectangles in \mathbb{R}^{2}, in which the minimum size of an ε-net is at least $C \frac{1}{\varepsilon} \log \frac{1}{\varepsilon}$. Here $C>0$ is an absolute constant.
Theorem 2 For any $\varepsilon>0$ and for any sufficiently large integer $n \geq n_{0}(\varepsilon)$, there exists a (primal) range space $\sum=(X, \mathcal{R})$ of VC-dimension 2 , where X is a set of n points of $\mathbb{R}^{4}, \mathcal{R}$ consists of axis-parallel boxes with one of their vertices at the origin, and in which the size of the smallest ε-net is at least $C \frac{1}{\varepsilon} \log \frac{1}{\varepsilon}$. Here $C>0$ is an absolute constant.
Theorem 3 For any $\varepsilon>0$ and for any sufficiently large integer $n \geq n_{0}(\varepsilon)$, there exists a (primal) range space $\sum=(X, \mathcal{R})$ of VC -dimension 2 , where X is a set of n points of \mathbb{R}^{4}, \mathcal{R} consists of half-spaces, and in which the size of the smallest ε-net is at least $C \frac{1}{\varepsilon} \log \frac{1}{\varepsilon}$. Here $C>0$ is an absolute constant.
Theorem 4 For any $\varepsilon>0$ and for any sufficiently large integer $n \geq n_{0}(\varepsilon)$, there exists a (primal) range space $\sum=(X, \mathcal{R})$, where X is a set of n points in the plane, \mathcal{R} consists of axis-parallel rectangles, and in which the size of the smallest ε-net is at least $C \frac{1}{\varepsilon} \log \log \frac{1}{\varepsilon}$. Here $C>0$ is an absolute constant.

The structure of the proofs in the paper is the following:

$$
\left.\left.\begin{array}{l}
\text { Lemma } 1 \\
\text { Lemma } 2
\end{array}\right\} \Longrightarrow \text { Theorem } 1 \Longrightarrow \begin{array}{c}
\text { Theorem } 2 \\
\text { Lemma } 3
\end{array}\right\} \Longrightarrow \text { Theorem 3 }
$$

Useful tools

Let $c \geq 2$ and $d \geq 1$ be integers. Let $x \in[c]^{k}=\{0,1, \ldots, c-1\}^{k}$, that is $x=x_{1} x_{2} \ldots x_{k}$, $k \in[d]$. Expanding x as a c-ary fraction we define $\bar{x}=\sum_{j=1}^{k} x_{j} / c^{k}$. For any $0 \leq k \leq d$, $u \in[c]^{k}$ and $v \in[c]^{d-k}$ we define an open axis-parallel rectangle $R_{u, v}^{k}$ in the unit square as

$$
R_{u, v}^{k}=\left(\bar{u}, \bar{u}+c^{-k}\right) \times\left(\bar{v}, \bar{v}+c^{k-d}\right)
$$

and consider the family

$$
\mathcal{R}=\mathcal{R}(c, d)=\left\{R_{u, v}^{k} \mid 0 \leq k \leq d, u \in[c]^{k}, v \in[c]^{d-k}, u_{k}=v_{d-k}\right\}
$$

Clearly $|\mathcal{R}|=(d+1) c^{d-1}$. Finally $\sum=\sum(c, d)$ be the infinite range space $\left(\mathbb{R}^{2}, \mathcal{R}\right)$ and let $\sum^{*}=\sum^{*}(c, d)$ denote its dual range space.
Lemma 1 Let $d \geq 1, r \geq 2, c \geq 3$ and let $\sum^{*}=\sum^{*}(c, d)$. If a subset $I \subset \mathcal{R}(c, d)$ contains no r-element range of \sum^{*} then

$$
|I| \leq(r-1) \frac{c-1}{c-2} c^{d-1}
$$

Lemma 2 Both \sum and \sum^{*} have VC-dimension 2.
Lemma 3 Let P be a finite set of points in the positive orthant of \mathbb{R}^{d}. To each $p \in P$ we can assign a point p^{\prime} in the positive orthant of \mathbb{R}^{d} so that the set $P^{\prime}=\left\{p^{\prime} \mid p \in P\right\}$ satisfies the following condition. For any axis-parallel box $B \subset \mathbb{R}^{d}$ that contains the origin, there is a half-space $H_{B} \subset \mathbb{R}^{d}$ which contains the origin and for which $\left\{p^{\prime} \mid p \in B \cap P\right\}=P^{\prime} \cap H_{B}$.
Lemma 4 Let $n \geq 2, r=\lceil\log \log n / 5\rceil$ be integers and $\varepsilon=r / n$. Let X be a set of n randomly uniformly selected points of unit square, and \mathcal{R} denote the family of all axisparallel rectngles of the form $\left[j / 2^{t},(j+1) / 2^{t}\right) \times[a, b]$, where $j, t \in \mathbb{N}_{0}$ and $a<b$ are reals. Then, with probability tending to 1 , the range space (X, \mathcal{R}) does not admit an ε-net of size at most $n / 2$.

