A simple algorithm for random colouring $G_{n, d / n}$ using $(2+\epsilon) d$ colours

Charilaos Efthymiou

December 19, 2013

presented by Vojtěch Kaluža

Notation.

- The formula $X \sim \Lambda$ means that X is a random variable with a probability distribution Λ.
- Let $U(M)$ stand for the uniform distribution over a set M.
- The set of all proper k-colourings of a graph G is denoted by $\Omega(G)$ or just Ω.

Definition: Let ν_{1}, ν_{2} be two probability distributions on the set Γ. Then their total variation distance is $\left\|\nu_{1}-\nu_{2}\right\|:=\sup _{A \subseteq \Gamma}\left|\nu_{1}(A)-\nu_{2}(A)\right|$.

Definition: Let μ, ν be two distributions on a finite set Ω. Then a distribution ω on the set $\Omega \times \Omega$ is called a coupling of μ and ν if the following holds:

$$
(\forall x \in \Omega) \quad \mu(x)=\sum_{y \in \Omega} \omega(x, y) \quad \& \quad \nu(x)=\sum_{y \in \Omega} \omega(y, x)
$$

Theorem (Coupling lemma): Let μ, ν be two distributions on a finite set Ω and ω their coupling:

1. Let $(X, Y) \sim \omega \Rightarrow\|\mu-\nu\| \leq \operatorname{Pr}[X \neq Y]$.
2. There always exists a coupling ω such that $\|\mu-\nu\|=\operatorname{Pr}[X \neq Y]$ for $(X, Y) \sim \omega$.

Definition: For $\sigma \in \Omega$ and some colour $q \in[k] \backslash\left\{\sigma_{v}\right\}$ we define the disagreement graph $Q_{\sigma_{v}, q}:=$ $\left(V^{\prime}, E^{\prime}\right)$ as the maximal induced subgraph of G such that

$$
V^{\prime}:=\left\{x \in V \mid \exists v-x \text { path in } G \text { consisting only of vertices with colours } \sigma_{v}, q\right\}
$$

We define the q-switching of the colouring σ as a function $H(\sigma, q): \Omega \times[k] \rightarrow \Omega$ that returns the colouring obtained from σ by switching the colours σ_{v} and q on the vertices in V^{\prime}.

Theorem 1: Let $G \sim G_{n, d / n}, \mu=U(\Omega(G))$ and μ^{\prime} be the distribution of the colourings that is returned by the algorithm. For fixed $k \geq(2+\epsilon) d, \epsilon>0$ and $d>d_{0}(\epsilon)$ with probability at least $1-n^{-\frac{\epsilon}{90 \log d}}$ it holds that

$$
\left\|\mu-\mu^{\prime}\right\| \in O\left(n^{-\frac{\epsilon}{90 \log d}}\right)
$$

Theorem 2: The time complexity of the algorithm is $O\left(n^{2}\right)$ with probability at lest $1-n^{-2 / 3}$.

Definition: Let G be a graph with two fixed vertices v and u, let $\sigma \in \Omega$ be a colouring of G. We call σ good if $\sigma_{v} \neq \sigma_{u}$, otherwise we call it bad.
For $c, q \in[k]$ we define $\Omega(c, q):=\left\{\sigma \in \Omega \mid \sigma_{v}=c \& \sigma_{u}=q\right\}$ and $\Omega_{c}:=\left\{\sigma \in \Omega \mid \sigma_{v}=c\right\}$.
For $c \neq q$ we also define $S(c, c):=\left\{\sigma \in \Omega(c, c) \mid u \notin V\left(Q_{c, q}\right)\right\}$ and $S(q, c):=\left\{\sigma \in \Omega(q, c) \mid u \notin V\left(Q_{q, c}\right)\right\}$.
Definition: Let $\Omega_{1}, \Omega_{2} \subseteq \Omega$ and $\alpha \in[0,1]$. We say that Ω_{1} is α-isomorphic to Ω_{2} if there are sets $\Omega_{i}^{\prime} \subseteq \Omega_{i}$ such that $\left|\Omega_{i}^{\prime}\right| \geq(1-\alpha)\left|\Omega_{i}\right|$, for $i=1,2$, and $\left|\Omega_{1}^{\prime}\right|=\left|\Omega_{2}^{\prime}\right|$. We call $\left(\Omega_{1}^{\prime}, \Omega_{2}^{\prime}\right)$ the isomorphic pair of Ω_{1} and Ω_{2}.
Let $h: \Omega_{1}^{\prime} \rightarrow \Omega_{2}^{\prime}$ be a bijection. Then any function $H: \Omega_{1} \rightarrow[k]^{V}$ is called α-function if $\left.H\right|_{\Omega_{1}^{\prime}}=h$.
Lemma 1: Assume that the sets Ω_{1} and Ω_{2} are α-isomorphic and $H: \Omega_{1} \rightarrow[k]^{V}$ is the α-function. Let $z \sim U\left(\Omega_{1}\right), z^{\prime}=H(z)$ and let ν^{\prime} be the distribution of z^{\prime}. Then we have $\left\|U\left(\Omega_{1}\right)-\nu^{\prime}\right\| \leq \alpha$.

Lemma 2: For any $c, q \in[k]$ with $c \neq q$ the sets $S(c, c)$ and $S(q, c)$ have the same cardinality and the q-switching function $H(\cdot, q): S(c, c) \rightarrow S(q, c)$ is a bijection.

Theorem 5: Let $G_{0}, \ldots, G_{r}=G$ be the sequence of graphs produced by the algorithm on the input G and k. Assume that for every $i=0, \ldots, r-1$ we have $\alpha_{i} \in[0,1]$ such that for any $c, q \in[k], c \neq q$, the set $\Omega_{i}(c, c)$ is α_{i}-isomorphic to the set $\Omega_{i}(q, c)$ with α_{i}-function $H(\cdot, q)$. Let μ^{\prime} be the distribution of the colourings that is returned by the algorithm. Then we have $\left\|U(\Omega(G))-\mu^{\prime}\right\| \leq \sum_{i=0}^{r-1} \alpha_{i}$.

Corollary 3: Let G_{i} be some fixed graph. For every $c, q \in[k]$ with $c \neq q$, the set $\Omega_{i}(c, c)$ is α isomorphic to $\Omega_{i}(q, c)$ with α-function $H(\cdot, q)$ if and only if the following holds. Choose u.a.r a colouring $\sigma \in \Omega_{i}(c, c)$. Then $\alpha \geq \max _{q \in[k] \backslash c c\}} \operatorname{Pr}\left[u_{i} \in Q_{\sigma_{v_{i}}, q} \mid G_{i}\right]$ and the analogous condition holds for a random colouring of $\Omega_{i}(q, c)$.

Lemma 5: With probability at least $1-n^{-2 / 3}$ we can have the sequence G_{0}, \ldots, G_{r} of subgraphs of $G_{n, d / n}$ satisfying the following three properties:

1. G_{0} consists only of isolated vertices and simple cycles, i.e. with no common edge, each of the maximum length less than $\frac{\log n}{9 \log d}$.
2. In G_{i} the graph distance $\operatorname{dist}_{G_{i}}\left(v_{i}, u_{i}\right)$ is at least $\frac{\log n}{9 \log d}$.
3. We have $\operatorname{Pr}\left[r \geq\left(1+n^{-1 / 3}\right) d n / 2\right] \leq \exp \left(-n^{1 / 4}\right)$.

Theorem 7: Take $k \geq(2+\epsilon) d$ where $\epsilon>0$ and $d \geq d_{0}(\epsilon)$ are fixed. For every $i=0, \ldots, r-1$ there is β_{i} such that for any $\alpha \geq \beta_{i}$ and any $c, q \in[k], c \neq q$ the sets $\Omega_{i}(c, c)$ and $\Omega_{i}(q, c)$ are α-isomorphic and $H(\cdot, q)$ is the α-function, while

$$
E\left[\beta_{i}\right] \leq \frac{(40+8 \epsilon) k}{\epsilon} n^{-\left(1+\frac{\epsilon}{45 \log d}\right)} .
$$

Proposition 2: Take $k \geq(2+\epsilon) d$ where $\epsilon>0$ and $d \geq d_{0}(\epsilon)$ are fixed. Let σ be a k-colouring of G_{i} that is chosen u.a.r. from $\left(\Omega_{i}\right)_{c}$. For some $q \in[k] \backslash\{c\}$ we define the event $A_{i}:=" u_{i} \in Q_{\sigma_{v}, q}$ ". Then we have

$$
\operatorname{Pr}\left[A_{i}\right] \leq \frac{(10+2 \epsilon)}{\epsilon} n^{-\left(1+\frac{\epsilon}{45 \log d}\right)} \quad i=0, \ldots, r-1
$$

