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Let f(a, b) be the smallest integer so that every sequence of f(a, b) distinct real numbers
contains either an increasing sequence of length a or a decreasing sequence of length b.

Proposition 1 (Erdős-Szekeres Lemma) f(n, n) ≤ (n− 1)2 + 1.

Let g(a, b) be the smallest integer so that every set of g(a, b) points in the plane in
general position, all with distinct x-coordinates, contains either a points p1, p2, . . . , pa with
increasing x-coordinate so that the slopes of the segments (p1, p2), (p2, p3), . . . , (pa−1, pa) are
increasing, or b points such that the slopes of these segments are decreasing.

Proposition 2 (Erdős-Szekeres Theorem) g(n, n) ≤
(
2n−4
n−2

)
+ 1.

A decreasing sequence of nonnegative integers a1 ≥ a2 ≥ . . . will be called a line par-
tition. A matrix A of nonnegative integers such that Ai,j ≥ Ai+1,j and Ai,j ≥ Ai,j+1 is
called a plane partition. Define a d-dimensional partition as a d-dimensional (hyper)matrix
A of nonnegative integers so that the matrix is decreasing in each line, that is Ai1,...,it,...,id ≥
Ai1,...,it+1,...,id for every i1, . . . , id and 1 ≤ t ≤ d.

Let Pd(n) be the number of n× · · · × n d-dimensional partitions with entries from [n]0.
We have

• P1(n) =
(
2n
n

)
and P2(n) =

∏
1≤i,j,k≤n

i+j+k−1
i+j+k−2 .

• Pd(n) ≤ 22nd
since a d-dimensional partition is composed of nd−1 line partitions.

Main results

Let Kk
N denote the complete k-uniform hypergraf on N ordered vertices. For a sequence

of vertices x1 < x2 < · · · < xn+k−1 we say that the edges {x1, . . . , xk}, {x2, . . . , xk+1},
. . . , {xn, . . . , xn+k−1} form a monotone path of length n.

Let Nk(q, n) be the smallest integer N such that every coloring of the edges of Kk
N with

q colors contains a monochromatic monotone path of length n.

• f(n + 1, n + 1) ≤ N2(2, n) ≤ n2 + 1

• g(n + 2, n + 2) ≤ N3(2, n) ≤
(
2n
n

)
+ 1

Theorem 1 For every q ≥ 2 and n ≥ 2 we have

N3(q, n) = Pq−1(n) + 1.

Theorem 2 For every d ≥ 1 and n ≥ 1 we have

Pd(n) ≥ 22nd/3
√
d+1.

Corollary 1 For every q ≥ 2 and n ≥ 2 we have

22nq−1/3
√
q ≤ N3(q, n) ≤ 22nq−1

.

Let tk(x) be a tower of exponents of height k − 1 with x at the top. So t3(x) = 22x .



Theorem 3 For every k ≥ 3, q ≥ 2 and n ≥ 2 we have

Nk(q, n) ≤ tk−2(N3(q, n)).

Theorem 4 There is an absolute constant n0 so that for every k ≥ 3, q ≥ 2 and n ≥ n0

we have
Nk(q, n) ≥ tk−2(N3(q, n)/3nq).

Corollary 2 For every k ≥ 3 we have

Nk(2, n) = tk−1((2− o(1))n),

where the o(n) term goes to 0 as n→∞.

Corollary 3 For every k ≥ 3, q ≥ 2 and sufficiently large n we have

tk−1(n
q−1/2

√
q) ≤ Nk(q, n) ≤ tk−1(2n

q−1).


