Ramsey Theory, Integer partitions and a New Proof of the Erdös-Szekeres Theorem

Guy Moshkovitz, Asaf Shapira

presented by Jaroslav Hančl

ESL, EST, Partitions

Let $f(a, b)$ be the smallest integer so that every sequence of $f(a, b)$ distinct real numbers contains either an increasing sequence of length a or a decreasing sequence of length b.
Proposition 1 (Erdős-Szekeres Lemma) $f(n, n) \leq(n-1)^{2}+1$.
Let $g(a, b)$ be the smallest integer so that every set of $g(a, b)$ points in the plane in general position, all with distinct x-coordinates, contains either a points $p_{1}, p_{2}, \ldots, p_{a}$ with increasing x-coordinate so that the slopes of the segments $\left(p_{1}, p_{2}\right),\left(p_{2}, p_{3}\right), \ldots,\left(p_{a-1}, p_{a}\right)$ are increasing, or b points such that the slopes of these segments are decreasing.
Proposition 2 (Erdős-Szekeres Theorem) $g(n, n) \leq\binom{ 2 n-4}{n-2}+1$.
A decreasing sequence of nonnegative integers $a_{1} \geq a_{2} \geq \ldots$ will be called a line partition. A matrix A of nonnegative integers such that $A_{i, j} \geq A_{i+1, j}$ and $A_{i, j} \geq A_{i, j+1}$ is called a plane partition. Define a d-dimensional partition as a d-dimensional (hyper)matrix A of nonnegative integers so that the matrix is decreasing in each line, that is $A_{i_{1}, \ldots, i_{t}, \ldots, i_{d}} \geq$ $A_{i_{1}, \ldots, i_{t}+1, \ldots, i_{d}}$ for every i_{1}, \ldots, i_{d} and $1 \leq t \leq d$.

Let $P_{d}(n)$ be the number of $n \times \cdots \times n d$-dimensional partitions with entries from $[n]_{0}$. We have

- $P_{1}(n)=\binom{2 n}{n}$ and $P_{2}(n)=\prod_{1 \leq i, j, k \leq n} \frac{i+j+k-1}{i+j+k-2}$.
- $P_{d}(n) \leq 2^{2 n^{d}}$ since a d-dimensional partition is composed of n^{d-1} line partitions.

Main results

Let K_{N}^{k} denote the complete k-uniform hypergraf on N ordered vertices. For a sequence of vertices $x_{1}<x_{2}<\cdots<x_{n+k-1}$ we say that the edges $\left\{x_{1}, \ldots, x_{k}\right\},\left\{x_{2}, \ldots, x_{k+1}\right\}$, $\ldots,\left\{x_{n}, \ldots, x_{n+k-1}\right\}$ form a monotone path of length n.

Let $N_{k}(q, n)$ be the smallest integer N such that every coloring of the edges of K_{N}^{k} with q colors contains a monochromatic monotone path of length n.

- $f(n+1, n+1) \leq N_{2}(2, n) \leq n^{2}+1$
- $g(n+2, n+2) \leq N_{3}(2, n) \leq\binom{ 2 n}{n}+1$

Theorem 1 For every $q \geq 2$ and $n \geq 2$ we have

$$
N_{3}(q, n)=P_{q-1}(n)+1 .
$$

Theorem 2 For every $d \geq 1$ and $n \geq 1$ we have

$$
P_{d}(n) \geq 2^{2 n^{d} / 3 \sqrt{d+1}} .
$$

Corollary 1 For every $q \geq 2$ and $n \geq 2$ we have

$$
2^{2 n^{q-1} / 3 \sqrt{q}} \leq N_{3}(q, n) \leq 2^{2 n^{q-1}} .
$$

Let $t_{k}(x)$ be a tower of exponents of height $k-1$ with x at the top. So $t_{3}(x)=2^{2^{x}}$.

Theorem 3 For every $k \geq 3, q \geq 2$ and $n \geq 2$ we have

$$
N_{k}(q, n) \leq t_{k-2}\left(N_{3}(q, n)\right) .
$$

Theorem 4 There is an absolute constant n_{0} so that for every $k \geq 3, q \geq 2$ and $n \geq n_{0}$ we have

$$
N_{k}(q, n) \geq t_{k-2}\left(N_{3}(q, n) / 3 n^{q}\right)
$$

Corollary 2 For every $k \geq 3$ we have

$$
N_{k}(2, n)=t_{k-1}((2-o(1)) n),
$$

where the $o(n)$ term goes to 0 as $n \rightarrow \infty$.
Corollary 3 For every $k \geq 3, q \geq 2$ and sufficiently large n we have

$$
t_{k-1}\left(n^{q-1} / 2 \sqrt{q}\right) \leq N_{k}(q, n) \leq t_{k-1}\left(2 n^{q-1}\right)
$$

