Polynomiality for Bin Packing with a Constant Number of Item Types

Michel X. Goemans, Thomas Rothvoß
Presented by Martin Böhm
Combinatorics and Graph Theory PhD Seminar, 2014, MFF UK

Bin packing

D(Bin Packing)
Input: A pair of vectors (s, a), where $s_{1}, s_{2}, s_{3}, \ldots s_{d}$ are item types, i.e. all possible sizes of our input items $\left(s_{i} \in[0,1]\right)$ and $a_{1}, a_{2}, \ldots, a_{d}$ are item multiplicities, i.e. how many items of each item type we need to pack ($a_{i} \in \mathbb{Z}_{\geq 0}$).
Goal: Find a minimum number of bins of capacity 1 such that all items are packed.
We are only considering a constant number of item types d.
We can look at Bin PACKING also in this manner:
Input: A pair of vectors (s, a) as before. From these two vectors, define a configuration space $\mathbb{P} \equiv\left\{x \in \mathbb{Z}_{\geq 0}^{d} \mid s^{T} x \leq 1\right\}$. An element x in the configuration space represents one valid packing of a bin.
Goal: Select a minimum number of vectors in \mathbb{P} such that we use all items with respect to their multiplicities, i.e. the vectors of configuration space we use sum up to a :

$$
\min \left\{\sum_{i} \lambda_{i} \mid \sum_{x \in \mathbb{P}} \lambda_{x} \cdot x=a ; \lambda \in \mathbb{Z}_{\geq 0}^{\mathbb{P}}\right\}
$$

Note: Even for fixed d, both \mathbb{P} and λ_{x} will be exponentially large. T(Main result): For any Bin Packing instance (s, a), an optimum integral solution can be computed in time $\mathrm{O}(\log \Delta)^{2^{\mathrm{O}(d)}}$, where Δ is the largest integer appearing in the denominator s_{i} or in a multiplicity a_{i}.

The polyhedral cookbook

D: Given a set $X \subseteq \mathbb{R}^{d}$, we define a convex cone as cone $(X) \equiv$ $\left\{\sum_{x \in X} \lambda_{x} x \mid \lambda_{x} \geq 0 \forall x \in X\right\}$ and an integer cone as intcone $(X)=$ $\left\{\sum_{x \in X}^{x \in X} \lambda_{x} x \mid \lambda_{x} \in \mathbb{Z}_{\geq 0} \forall x \in X\right\}$.
D: For a polytope $P=\left\{x \in \mathbb{R}^{d} \mid A x \leq b\right\}$, we define enc (P) as the number of bits that it takes to write down the inequalities defining P.

D: For a vector λ we define support $\operatorname{supp}(\lambda)$ as the non-zero indices of λ.

D: Define a d-dimensional parallelepiped Π with center v_{0} as

$$
\Pi=\left\{v_{0}+\sum_{i=1}^{k} \mu_{i} v_{i}:\left|\mu_{i}\right| \leq 1\right\}
$$

Usually we assume that parallelepipeds have linearly independent vectors v_{i}.
\mathbf{T} (Finding conic combinations): Given polytopes $P, Q \subseteq \mathbb{R}^{d}$, one can find a $y \in \operatorname{intcone}\left(P \cap \mathbb{Z}^{d}\right) \cap Q$ and a vector $\lambda \in \mathbb{Z}_{>0}^{P \cap \mathbb{Z}^{d}}$ such that $y=\sum_{x \in P \cap \mathbb{Z}_{d}} \lambda_{x} x$ in time $\operatorname{enc}(P)^{2^{\mathrm{O}(d)}} \cdot \operatorname{enc}(Q)^{O(1)}$, or decide that no such y exists. Moreover, $|\operatorname{supp}(\lambda)|$ is upper bounded by $2^{2 d+1}$.
The previous theorem can be proven using the Structure Theorem, stated as follows:
\mathbf{T} (Structure Theorem): Let $P=\left\{x \in \mathbb{R}^{d} \mid A x \leq b\right\}$ be a polytope with $A \in \mathbb{Z}^{m \times d}, b \in \mathbb{Z}^{m}$ such that all coefficients are absolutebounded by Δ. Then there exists a set $X \subseteq P \cap \mathbb{Z}^{d}$ of size $|X| \leq$ $N \equiv m^{d} d^{\mathrm{O}}{ }^{(d)}(\log \Delta)^{d}$ that can be computed in time $N^{\mathrm{O}(1)}$ with the following property:
For any vector $a \in \operatorname{intcone}\left(P \cap \mathbb{Z}^{d}\right)$ there exists an integral vector $\lambda \in \mathbb{Z} P{ }_{\geq 0}^{P \cap \mathbb{Z}^{d}}$ such that $\sum_{x \in P \cap \mathbb{Z}^{d}} \lambda_{x} \cdot x=a$ and

1. $\lambda_{x} \in\{0,1\}$ for all x outside X, that is $x \in\left(P \cap \mathbb{Z}^{d}\right) \backslash X$.
2. $|\operatorname{supp}(\lambda) \cap X| \leq 2^{2 d}$
3. $|\operatorname{supp}(\lambda) \backslash X| \leq 2^{2 d}$.

The recipe

The key idea behind the Structure Theorem is as follows:

- Split the polytope into polynomially many full-dimensional cells. The cells are not equicardinal, their sizes are chosen strategically.
- For each cell, we do the following:
- We fix an arbitrary integral point of the cell.
- We envelop all integral points of the cell by a blowup convex hull with few vertices.
- Using the hull, we cover all integral points with polynomially many parallelepipeds.
- If too many points are selected into λ_{x}, we redistribute their weight to the vertices of the parallelepiped.

The pre-baked ingredients

\mathbf{T} (Solving integer programs of fixed dimension): Given $A \in \mathbb{Z}^{m \times d}$ and $b \in \mathbb{Z}^{m}$ with $\Delta \equiv \max \left(\|A\|_{\infty},\|b\|_{\infty}\right)$, one can find an $x \in \mathbb{Z}^{d}$ with $A x \leq b$ (or deciding that none exists) in time $d^{\mathrm{O}(d)} \cdot m^{\mathrm{O}(1)}$.
T(Few vertices in an int. hull): Consider any polytope P with m constraints and $\Delta \equiv \max \left(\|A\|_{\infty},\|b\|_{\infty}\right) \geq 2$. Then $P_{I}=\operatorname{conv}(P \cap$ $\left.\mathbb{Z}^{d}\right)$ has at most $(m \cdot \mathrm{O}(\log \Delta))^{d}$ extreme points. In fact a list of the extreme points can be computed in time $d^{\mathrm{O}(d)}(m \cdot \mathrm{O}(\log \Delta))^{\mathrm{O}(d)}$.
\mathbf{T} (Encapsulate a polytope by a blowup with few vertices): For a centrally symmetric polytope $P \subseteq \mathbb{R}^{d}$, there are $k \leq \frac{d}{2}(d+3)$ many extreme points $x_{1}, \ldots, x_{k} \in \operatorname{vert}(P)$ such that $P \subseteq \operatorname{conv}\left(\pm \sqrt{d} \cdot x_{j} \mid j \in\right.$ $[k]$).
\mathbf{T} (Computing a minimum volume ellipsoid): Given a set of points S in \mathbb{R}^{d}, we can use SDP to compute a minimum volume ellipsoid E containing the given points in time polynomial to their encoding. Moreover, using the dual solution of the SDP, we can determine the contact points of $E \cap \operatorname{conv}(S)$.

Cooking

$\mathrm{L}(1):$ Let $P=\left\{x \in \mathbb{R}^{d} \mid A x \leq b\right\}$ be a polytope defined by m inequalities with integral coefficients of absolute value at most Δ. Then there exists a set Par of at most $N \equiv m^{d} d^{\mathrm{O}}(d)(\log \Delta)^{d}$ integral parallelepipeds such that

$$
P \cap \mathbb{Z}^{d} \subseteq \bigcup_{\Pi \in \text { Par }} \Pi \subseteq P
$$

$\mathrm{L}(2)$: For any polytope $P \subseteq \mathbb{R}^{d}$ and any integral vector $\lambda \in \mathbb{Z}_{\geq 0}^{P \cap \mathbb{Z}^{d}}$ there exists a $\mu \in \mathbb{Z}_{\geq 0}^{P \cap \mathbb{Z}^{d}}$ such that $|\operatorname{supp}(\mu)| \leq 2^{d}$ and $\sum_{x} \mu_{x} x=$ $\sum_{x} \lambda_{x} x$. Furthermore, $\operatorname{supp}(\mu) \subseteq \operatorname{conv}(\operatorname{supp}(\lambda))$.
$\mathrm{L}(3)$: Given an integral parallelepiped Π with vertices X. Then for any $x^{*} \in \Pi \cap \mathbb{Z}^{d}$ and $\lambda^{*} \in \mathbb{Z}_{d \geq 0}$ there is an integral vector $\mu \in \mathbb{Z}_{\geq 0}^{\Pi \cap \mathbb{Z}^{d}}$ such that the following holds:

1. $\lambda^{*} x^{*}=\sum_{x} \mu_{x} x$,
2. $|\operatorname{supp}(\mu \backslash X)| \leq 2^{d}$,
3. $\mu_{x} \in\{0,1\} \forall x \notin X$.
\mathbf{P} (Finding conic combinations): Let $P=\{x \mid A x \leq b\}, Q=\{x \mid \bar{A} x \leq$ $\bar{b}\}$.
Compute the set X of size at most $N=m^{d} d^{\mathrm{O}}{ }^{(d)}(\log \Delta)^{d}$ from the Structure Theorem in time $N^{\mathrm{O}(1)}$. Let y^{*} be the (unknown) target vector. Using the Structure Theorem, we get λ^{*}.
At the expense of a factor $N^{2^{2 d}}$ guess $X^{\prime}=X \cap \operatorname{supp}\left(\lambda^{*}\right)$. At the expense of factor $2^{2 d}+1$ guess the number $k=\sum_{x \notin X^{\prime}} \lambda_{x}^{*} \in\left[2^{2 d}\right]$ of extra points.
Create the following ILP:

$$
\begin{aligned}
\forall i \in[k]: A x_{i} & \leq b \\
\sum_{x \in X^{\prime}} \lambda_{x} x+\sum_{i=1}^{k} x_{i} & =y \\
\bar{A} y & \leq \bar{b} \\
\forall x \in X^{\prime}: \lambda_{x} & \in \mathbb{Z}_{\geq 0} \\
\forall i \in[k]: x_{i} & \in \mathbb{Z}^{d}
\end{aligned}
$$

The number of variables is $X^{\prime}+(k+1) d \leq 2^{\mathrm{O}(d)}$, the number of constraints is $k m+d+\bar{m}+\left|X^{\prime}\right| d=2^{\mathrm{O}(d)} m+\bar{m}$. Maximal coefficient is $\max \left(d!\Delta^{d}, \bar{\Delta}\right)$.
Bon appetit!

