Klee's Measure Problem Made Easy

Timothy M. Chan

presented by Tomáš Gavenčiak

Problem formulations

Given n axis-parallel d-dimensional boxes B (hyperrectangles) in $\mathbb{R}^{d} \ldots$

Klee's measure problem

... determine the measure of their union $H^{d}(\bigcup B)$.

Maximum depth problem

\ldots find a point $x \in \mathbb{R}^{d}$ that is contained in the maximum number of boxes.

Weighted maximum depth problem

\ldots and weights $w: B \rightarrow \mathbb{R}$, find a point $x \in \mathbb{R}^{d}$ maximising $\sum_{x \in b \in B} w(b)$.

Coverage problem

\ldots and an axis-parallel hyperrectangle Γ (the domain), does $\bigcup B$ cover Γ ?

Small k-cluster

Given n points in \mathbb{R}^{d} and a number k, find a subset of k points with minimal L_{∞} diameter.
Graph k-clique
Given a graph on n nodes and a number k, is there a clique of size k ?

Gradual improvements

J. L. Bentley, 1977: $O(n \log n)$ algorithm for measure in \mathbb{R}^{2} (sweeping), $O\left(n^{d-1} \log n\right)$ for general d. Similarly for depth.
Overmars and Yap, FOCS 1988: $O\left(n^{d / 2} \log n\right)$ algorithm for the measure problem. Similarly for depth.
T. M. Chan, 2010: $O\left(n^{d / 2} 2^{\log ^{*} n}\right)$ algorithm for measure problem. Similarly for depth.
T. M. Chan, 2010: If the static d-dimensional measure (or coverage) problem can be solved in $T_{d}(n)$ time, then we can decide whether an arbitrary n-vertex graph contains a clique of size d in $O\left(T_{d}\left(O\left(n^{2}\right)\right)\right.$) time.

The best combinatorial algorithms for k-clique currently runs in $O^{*}\left(n^{k}\right)$ (ignoring log-factors). The best algorithm using matrix multiplication runs roughly in $O\left(n^{w k / 3}\right)$ for $w \sim 2.376$.

Current results

T1: There is a simple $O\left(n^{d / 2}\right)$ algorithm for the measure problem.
T2: There is $O\left(n^{d / 2} / \log ^{d / 2} n \log \log ^{O(1)} n\right)$ algorithm for the depth and cover problem.
T3: There is $O\left(n^{d / 2} / \log ^{d / 2-c} n \log \log ^{O(1)} n\right)$, with constant $c<5$, algorithm for the weighted depth problem.
T4: There is $O\left(\left(n^{d / 2} / \log ^{d / 2}\right) / \log U \log \log ^{O(1)} U\right)$ algorithm for the measure problem on word-RAM with integer coordinates $0 \ldots U$.
T5: There is $O\left(n^{d / 3} \log { }^{O(1)} n\right)$ algorithm for the measure problem of arbitrary orthants.
T6: There is $O\left(n^{(d+1) / 3} \log O(1) n\right)$ algorithm for the measure problem of arbitrary hypercubes.

Tools

L3.1: We can preprocess N linear functions $f_{1}, \ldots, f_{N}: \mathbb{R}^{b} \rightarrow \mathbb{R}$ in time $(b N)^{O(b)}$ and then compute $f(x)=\max \left\{f_{1}(x), \ldots, f_{N}(x)\right\}$ in time $O\left(b^{c} \log N\right)$ for any $x \in \mathbb{R}^{b}$ and $c \leq 5$.

L3.2: Given a polynomial $f: \mathbb{R}^{b} \rightarrow \mathbb{R}$ of degree $O(1)$ and $O(1)$ bounded integer coefficients, we can compute $S=\sum_{l=1}^{m} f\left(x^{(l)}\right)$ for $m b$-tuples $x^{(1)}, \ldots x^{(m)} \in[U]^{b}$ with all numbers from a set $X,|X|=n$, in time

$$
O\left((m+n) \log U / \log \log U+m b \log b+2^{O(b \log \log U)}\right) .
$$

Basic predicate $E\left(x_{1}, \ldots x_{d}\right)$ is conjunction of $O\left(d^{2}\right)$ conditions of the form $x_{j} ? f_{i, j}\left(x_{i}\right)$, with $f_{i, j}$ monotone step function and ? either \leq or \geq.
Basic function is of the form $F\left(x_{1}, \ldots x_{d}\right)=\left[E\left(x_{1}, \ldots x_{d}\right)\right] \cdot h_{1}\left(x_{1}\right) \cdot h_{2}\left(x_{2}\right) \ldots h_{d}\left(x_{d}\right)$ with $h_{i}\left(x_{i}\right)$ piecewise-polynomial functions (density). Complexity of F is number of steps of $f_{i, j}$ and pieces of h_{i}.
L4.2: If F is basic of complexity n and degree s, then $F^{\prime}\left(x_{1}, \ldots x_{d}\right)=\int_{-\infty}^{x_{d}} F\left(x_{1}, \ldots x_{d-1}, \xi\right) d \xi$ is a sum of $O(1)$ basic functions of complexity $O(n)$ and degree $s+1$, constructible in time $O(n+s)$.

