Interlacing Families I: Bipartite Ramanujan Graphs of All Degrees

by Adam Marcus, Daniel A. Spielman and Nikhil Srivastava

- graph G, adjacency matrix A, if G is d-regular, d is always its eigenvalue, $-d$ is eigenvalue $\Longleftrightarrow G$ is bipartite (trivial eigenvalues)
- Ramanujan graph - all non-trivial eigenvalues are in absolute value $\leq 2 \sqrt{d-1}$

GOAL

- to construct an infinite family of d-regular Ramanujan graphs for all d
- this will be constructed as an infinite sequence of 2-lifts of Ramanujan graphs

COVERS

- 2-lift of $G=(V, E): \bar{G}=(\bar{V}, \bar{E}) \bar{V}=\left\{u_{1}, u_{2} \forall u \in V\right\}$ and

$$
\forall(u, v) \in E\left\{\begin{array}{l}
\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) \in \bar{E} \\
\left(u_{1}, v_{2}\right),\left(u_{2}, v_{1}\right) \in \bar{E}
\end{array}\right.
$$

- corresponding signing s of the edges by ± 1, corresponding signed adjacency matrix A_{s}
- eigenvalues of a two lift are the union of eigenvalues of G and the eigenvalues of A_{s}
- universal cover of a graph G is an infinite tree such that every connected lift of G is a quotient of the tree
- path-tree of a graph $G, u(u \in V(G))$ contains one vertex for every non-backtracking path in G that starts in u
- every path-tree of G is an induced subgraph of the universal cover of G
- eigenvalues of a d-regular universal cover are $|\lambda| \leq 2 \sqrt{d-1}((c, d)$-biregular, then $|\lambda| \leq \sqrt{d-1}+\sqrt{c-1})$

ROOTS OF THE EXPECTED VALUE OF THE CHAR. POLY. OF A_{s} ARE $\leq 2 \sqrt{d-1}$

- matching polynomial of G is

$$
\mu_{G}(x)=\sum_{i \geq 0} x^{n-2 i}(-1)^{i} m_{i}
$$

where $m_{0}=1$ and m_{i} is the number of matchings in G with i edges for $i>0$

- spectral radius of graph G is $\rho(G)=\max \left\{\|A x\|_{2},\|x\|_{2}=1\right\}$, where λ_{i} are the eigenvalues of its adjacency matrix A $\left(\rho(G)=\sup \left\{\|A x\|_{2},\|x\|_{2}=1\right\}\right.$ for A infinite-dimensional)

Theorem. 3.1. For every graph G, μ_{G} has only real roots.
Theorem. 3.2. For every graph G of maximum degree d, all roots of μ_{G} have absolute value at most $2 \sqrt{d-1}$.
Theorem. 3.4. Let $T(G, u)$ be a path-tree, then μ_{G} divides the characteristic polynomial of the adjacency matrix of $T(G, u)$, i.e. all roots of μ_{G} are real with absolute value at most $\rho(T(G, u))$.
Theorem. 3.5. Let G be a graph and T its universal cover. Then the roots of the matching polynomial of G are bounded in absolute value by the the spectral radius of T.

Theorem. 3.6. $\mathbb{E}_{s \in\{ \pm 1\}^{m}}\left[f_{s}(x)\right]=\mu_{G}(x)$.

INTERLACING POLYNOMIALS - USEFUL ROOT BOUNDARIES

- $g(x)=\prod_{i=1}^{n-1}\left(x-\alpha_{i}\right), f(x)=\prod_{i=1}^{n}\left(x-\beta_{i}\right), g$ interlaces f if: $\beta_{a} \leq \alpha_{1} \leq \beta_{2} \leq \ldots \leq \alpha_{n-1} \leq \beta_{n}$

Theorem. 4.2. Let $f_{1}, \ldots f_{k}$ be real-rooted polynomials of the same degree, with positive leading coefficient, $f_{\emptyset}=\sum_{i=1}^{k} f_{i}$. If $f_{1}, f_{2}, \ldots f_{k}$ have a common interlacing, then there exists an i such that the largest root of f_{i} is at most the largest root of f_{\emptyset}.

- $S_{1}, \ldots S_{m}$ finite sets and for every $s_{1} \in S_{1}, \ldots s_{m} \in S_{m}$ let $f_{s_{1}, \ldots s_{m}}$ be a real-rooted degree n polynomial with positive leading coefficients.
For every partial assignment $s_{1} \in S_{1}, \ldots s_{k} \in S_{k}$ define

$$
\begin{gathered}
f_{s_{1}, \ldots s_{k}}=\sum_{s_{k+1} \in S_{k+1}, \ldots s_{m} \in S_{m}} f_{s_{1}, \ldots s_{k}, s_{k+1} \ldots s_{m}} \\
f_{\emptyset}=\sum_{s_{1} \in S_{1}, \ldots s_{m} \in S_{m}} f_{s_{1}, \ldots s_{m}} .
\end{gathered}
$$

- if for all $k=0,1, \ldots m-1$ and all $s_{1} \in S_{1} \ldots s_{k} \in S_{k}$ the polynomials $\left\{f_{s_{1}, \ldots s_{k}, t}\right\}_{t \in S_{k+1}}$ have a common interlacing, then $\left\{f_{s_{1}, \ldots s_{m}}\right\}_{s_{1}, \ldots s_{m}}$ form an interlacing family.

Theorem. 4.4. Let $S_{1}, \ldots S_{m}$ be finite sets, and let $\left\{f_{s_{1}, \ldots s_{m}}\right\}$ be an interlacing family of polynomials. Then there exists some $s_{1}, \ldots s_{m} \in S_{1} \times \ldots \times S_{m}$ so that the largest root of $\left\{f_{s_{1}, \ldots s_{m}}\right\}$ is less than the largest root of f_{\emptyset}.

Theorem. 4.5. Let f and g be (univariate) polynomials of degree n such that for all $\alpha, \beta>0, \alpha f+\beta g$ has n real roots. Then f and g have a common interlacing.

SIGNED CHAR. POLY. ARE \mathbb{R}-ROOTED AND FORM INTERLACING FAMILY

Theorem. 5.1. Let $p_{1}, \ldots p_{m}$ be be numbers in $[0,1]$. Then the following polynomial is real-rooted:

$$
\sum_{s \in\{ \pm 1\}^{m}}\left(\prod_{i: s_{i}=1} p_{i}\right)\left(\prod_{i: s_{i}=-1}\right) f_{s}(x) .
$$

Theorem. 5.2. The polynomials $\left\{f_{s}\right\}_{s \in\{ \pm 1\}^{m}}$ are an interlacing family.

WE ARE ALMOST DONE :)

Theorem. 5.3. Let G be a graph with adjacency matrix A and universal cover T. Then there is a signing s of A such that all of the eigenvalues of A_{s} are at most $\rho(T)$, i.e. for d-regular graphs, the eigenvalues of A_{s} are at most $2 \sqrt{d-1}$

Theorem. 5.4. For every $d \geq 3$ there is an infinite sequence of d-regular bipartite Ramanujan graphs.
Theorem. 5.5. For every $c, d \geq 3$ there is an infinite sequence of (c, d)-biregular bipartite Ramanujan graphs, with nontrivial eigenvalues bounded by $\sqrt{c-1}+\sqrt{d-1}$.

SOME MORE DEFINITIONS \& PROOF OF THM 5.1.

- multivariate polynomial $f \in \mathbb{R}\left[z_{1}, \ldots z_{n}\right]$ is real stable if $f\left(z_{1}, \ldots z_{n}\right) \neq 0$ whenever the imaginary part of every z_{i} is strictly positive.

Theorem. 6.2. Let $f\left(z_{1}, \ldots z_{n}\right)+\omega g\left(z_{1}, \ldots z_{n}\right) \in \mathbb{R}\left[z_{1}, \ldots z_{n}, \omega\right]$ be a real stable of degree at most 1 in z_{j}. Then the following polynomial will also be real stable:

$$
f\left(z_{1}, \ldots z_{n}\right)-\frac{\partial g}{\partial z_{j}}\left(z_{1}, \ldots z_{n}\right)
$$

Theorem. 6.3. For any real stable polynomials $f\left(z_{1}, \ldots z_{n}\right)$ and $t\left(\omega_{1}, \ldots \omega_{m}\right)$ with $m \leq n$ which both have degree at most 1 in the variables z_{j}, ω_{j} for $a \leq j \leq m$, the polynomial below will also be real stable:

$$
t\left(-\frac{\partial g}{\partial z_{1}}, \ldots,-\frac{\partial g}{\partial z_{m}}\right) f\left(z_{1}, \ldots z_{n}\right) .
$$

Theorem. 6.4. Let $A_{1}, \ldots A_{m}$ be positive semidefinite matrices. Then $\operatorname{det}\left[z_{1} A_{1}+\ldots+z_{m} A_{m}\right]$ is a real stable polynomial. Theorem. 6.5. Let $a_{1}, \ldots a_{m}$ and $b_{1}, \ldots b_{m}$ be vectors in \mathbb{R}^{n} and let $p_{1}, \ldots p_{m}$ be real numbers in $[0,1]$. Then every (univariate) polynomial of the form below is real stable:

$$
P(x)=\sum_{S \subseteq[m]}\left(\prod_{i \in S} p_{i}\right)\left(\prod_{i \notin S}\left(1-p_{i}\right)\right) \operatorname{det}\left[x I+\sum_{i \in S} a_{i} a_{i}^{T}+\sum_{i \notin S} b_{i} b_{i}^{T}\right] .
$$

