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• graph G, adjacency matrix A, if G is d-regular, d is always its eigenvalue, −d is eigenvalue ⇐⇒ G is bipartite
(trivial eigenvalues)

• Ramanujan graph - all non-trivial eigenvalues are in absolute value ≤ 2
√
d− 1

GOAL
• to construct an infinite family of d-regular Ramanujan graphs for all d

• this will be constructed as an infinite sequence of 2-lifts of Ramanujan graphs

COVERS
• 2-lift of G = (V,E): Ḡ = (V̄ , Ē) V̄ = {u1, u2∀u ∈ V } and

∀(u, v) ∈ E

{
(u1, v1), (u2, v2) ∈ Ē

(u1, v2), (u2, v1) ∈ Ē

• corresponding signing s of the edges by ±1, corresponding signed adjacency matrix As

• eigenvalues of a two lift are the union of eigenvalues of G and the eigenvalues of As

• universal cover of a graph G is an infinite tree such that every connected lift of G is a quotient of the tree

• path-tree of a graph G, u (u ∈ V (G)) contains one vertex for every non-backtracking path in G that starts in u

• every path-tree of G is an induced subgraph of the universal cover of G

• eigenvalues of a d-regular universal cover are |λ| ≤ 2
√
d− 1 ((c, d)-biregular, then |λ| ≤

√
d− 1 +

√
c− 1)

ROOTS OF THE EXPECTED VALUE OF THE CHAR. POLY. OF As ARE ≤ 2
√
d− 1

• matching polynomial of G is
µG(x) =

∑
i≥0

xn−2i(−1)imi

where m0 = 1 and mi is the number of matchings in G with i edges for i > 0

• spectral radius of graph G is ρ(G) = max{∥Ax∥2, ∥x∥2 = 1}, where λi are the eigenvalues of its adjacency matrix A
(ρ(G) = sup{∥Ax∥2, ∥x∥2 = 1} for A infinite-dimensional)

Theorem. 3.1. For every graph G, µG has only real roots.

Theorem. 3.2. For every graph G of maximum degree d, all roots of µG have absolute value at most 2
√
d− 1.

Theorem. 3.4. Let T (G, u) be a path-tree, then µG divides the characteristic polynomial of the adjacency matrix of
T (G, u), i.e. all roots of µG are real with absolute value at most ρ(T (G, u)).

Theorem. 3.5. Let G be a graph and T its universal cover. Then the roots of the matching polynomial of G are bounded
in absolute value by the the spectral radius of T .

Theorem. 3.6. Es∈{±1}m [fs(x)] = µG(x).



INTERLACING POLYNOMIALS - USEFUL ROOT BOUNDARIES
• g(x) =

∏n−1
i=1 (x− αi), f(x) =

∏n
i=1(x− βi), g interlaces f if: βa ≤ α1 ≤ β2 ≤ . . . ≤ αn−1 ≤ βn

Theorem. 4.2. Let f1, . . . fk be real-rooted polynomials of the same degree, with positive leading coefficient, f∅ =
∑k

i=1 fi.
If f1, f2, . . . fk have a common interlacing, then there exists an i such that the largest root of fi is at most the largest root
of f∅.

• S1, . . . Sm finite sets and for every s1 ∈ S1, . . . sm ∈ Sm let fs1,...sm be a real-rooted degree n polynomial with
positive leading coefficients.
For every partial assignment s1 ∈ S1, . . . sk ∈ Sk define

fs1,...sk =
∑

sk+1∈Sk+1,...sm∈Sm

fs1,...sk,sk+1...sm

f∅ =
∑

s1∈S1,...sm∈Sm

fs1,...sm .

• if for all k = 0, 1, . . .m− 1 and all s1 ∈ S1 . . . sk ∈ Sk the polynomials {fs1,...sk,t}t∈Sk+1
have a common interlacing,

then {fs1,...sm}s1,...sm form an interlacing family.

Theorem. 4.4. Let S1, . . . Sm be finite sets, and let {fs1,...sm} be an interlacing family of polynomials. Then there exists
some s1, . . . sm ∈ S1 × . . .× Sm so that the largest root of {fs1,...sm} is less than the largest root of f∅.

Theorem. 4.5. Let f and g be (univariate) polynomials of degree n such that for all α, β > 0, αf + βg has n real roots.
Then f and g have a common interlacing.

SIGNED CHAR. POLY. ARE R-ROOTED AND FORM INTERLACING FAMILY
Theorem. 5.1. Let p1, . . . pm be be numbers in [0, 1]. Then the following polynomial is real-rooted:∑

s∈{±1}m

(
∏

i:si=1

pi)(
∏

i:si=−1

)fs(x).

Theorem. 5.2. The polynomials {fs}s∈{±1}m are an interlacing family.

WE ARE ALMOST DONE :)
Theorem. 5.3. Let G be a graph with adjacency matrix A and universal cover T . Then there is a signing s of A such
that all of the eigenvalues of As are at most ρ(T ), i.e. for d-regular graphs, the eigenvalues of As are at most 2

√
d− 1

Theorem. 5.4. For every d ≥ 3 there is an infinite sequence of d-regular bipartite Ramanujan graphs.

Theorem. 5.5. For every c, d ≥ 3 there is an infinite sequence of (c, d)-biregular bipartite Ramanujan graphs, with
nontrivial eigenvalues bounded by

√
c− 1 +

√
d− 1.

SOME MORE DEFINITIONS & PROOF OF THM 5.1.
• multivariate polynomial f ∈ R[z1, . . . zn] is real stable if f(z1, . . . zn) ̸= 0 whenever the imaginary part of every zi is

strictly positive.

Theorem. 6.2. Let f(z1, . . . zn) + ωg(z1, . . . zn) ∈ R[z1, . . . zn, ω] be a real stable of degree at most 1 in zj. Then the
following polynomial will also be real stable:

f(z1, . . . zn)−
∂g

∂zj
(z1, . . . zn).

Theorem. 6.3. For any real stable polynomials f(z1, . . . zn) and t(ω1, . . . ωm) with m ≤ n which both have degree at most
1 in the variables zj , ωj for a ≤ j ≤ m, the polynomial below will also be real stable:

t(− ∂g

∂z1
, . . . ,− ∂g

∂zm
)f(z1, . . . zn).

Theorem. 6.4. Let A1, . . . Am be positive semidefinite matrices. Then det[z1A1+ . . .+zmAm] is a real stable polynomial.

Theorem. 6.5. Let a1, . . . am and b1, . . . bm be vectors in Rn and let p1, . . . pm be real numbers in [0, 1]. Then every
(univariate) polynomial of the form below is real stable:

P (x) =
∑

S⊆[m]

(
∏
i∈S

pi)(
∏
i/∈S

(1− pi))det[xI +
∑
i∈S

aia
T
i +

∑
i/∈S

bib
T
i ].


