Independent sets in hypergraphs

József Balogh, Robert Morris, Wojciech Samotij Presented by Martin Böhm
Postgrad. Combinatorial Seminar, MFF UK

Definitions and notation

D (Usual notation.): \mathcal{H}, \mathcal{G} hypergraphs. $|\mathcal{H}|$ number of vertices, $\|\mathcal{H}\|$ edges. $\mathcal{I}(\mathcal{H})$ is the family of all independent sets
D:We say a uniform \mathcal{H} is $(\mathcal{F}, \varepsilon)-$ dense) if $\forall A \in \mathcal{F}:\|\mathcal{H}[A]\| \geq \varepsilon\|\mathcal{H}\|$. D:We define the max-degree of l-tuples as

$$
\Delta_{l}(\mathcal{H})=\max \left\{\operatorname{deg}_{\mathcal{H}}(T): T \subseteq V(\mathcal{H}),|T|=l\right\} .
$$

D:Let H be a t-uniform hypergraph with at least $t+1$ vertices. We define the t-density of H, denoted by $m_{t}(H)$, by

$$
m_{t}(H)=\max \left(\frac{\|H\|-1}{|H|-t}\left|H^{\prime} \subseteq H,\left|H^{\prime}\right| \geq t+1\right) .\right.
$$

D:We say that H is t-balanced if $m_{t}\left(H^{\prime}\right) \leq m_{t}(H)$ for all $H^{\prime} \subseteq H$.

Main theorem

$\mathbf{T}: \forall k \in N$ and all positive $c, c^{\prime}, \varepsilon$ there exists a positive constant C such that the following holds:
Let \mathcal{H} be a k-uniform hypergraph and let $\mathcal{F} \subseteq 2^{V(\mathcal{H})}$ be an increasing family such that $\forall A \in \mathcal{F}:|A| \geq \varepsilon|\mathcal{H}|$. Assume also that \mathcal{H} is $(\mathcal{F}, \varepsilon)$ dense and $p \in(0,1)$ is set such that $p^{k-1}| | \mathcal{H}| | \geq c^{\prime}|\mathcal{H}|$ and $\forall l \in[k-1]$

$$
\Delta_{l}(\mathcal{H}) \leq c \cdot \min \left(p^{l-k}, p^{l-1} \frac{\|\mathcal{H}\|}{|\mathcal{H}|}\right)
$$

Then there exists a family $\mathcal{S} \subseteq\binom{V(\mathcal{H})}{\leq C p|\mathcal{H}|}$ and functions $f: \mathcal{S} \rightarrow \overline{\mathcal{F}}$ and $g: \mathcal{I}(\mathcal{H}) \rightarrow S$ such that for every $I \in \mathcal{I}(\mathcal{H})$:

$$
g(I) \subseteq I, I \backslash g(I) \subseteq f(g(I))
$$

"Roughly speaking, if \mathcal{H} satisfies certain technical conditions, then each independent set I in \mathcal{H} can be labeled with a certain small subset $g(I)$ in such a way thaht all sets labeled with $S \in \mathcal{S}$ are essentially contained in a single set $f(S)$ that contains very few edges of \mathcal{H}."

Applications

Szemerédi's theorem for sparse sets

L(Robust version of Szemerédi's theorem):
$\delta>0, k \in[n] \exists \varepsilon>0, \exists n_{0} \forall n \geq n_{0}$: Every subset of $[n]$ with at least δn elements contains at least $\varepsilon n^{2} k$-term APs.
\mathbf{T} (Szemerédi's theorem for sparse sets): For every positive β and k integer, there exist constants C and n_{0} such that the following holds For all $n \geq n_{0}$ if $m \geq C n / n^{-(k-1)}$, then there are at most $\binom{\beta n}{m}$ m-subsets of $[n]$ that contain no k-term AP.

KŁR conjecture

D:Given a $p \in[0,1]$, a bipartite graph between V_{1}, V_{2} is (ε, p)-regular if for every $W_{1} \subseteq V_{1}, W_{2} \subseteq V_{2},\left|W_{i}\right| \geq \varepsilon\left|V_{i}\right|$, the density $d\left(W_{1}, W_{2}\right)$ satisfies

$$
\left|d\left(W_{1}, W_{2}\right)-d\left(V_{1}, V_{2}\right)\right| \leq \varepsilon p
$$

D:The collection $\mathcal{G}(H, n, m, p, \varepsilon)$ is a collection of all graphs G constructed thus:
$V(G) \equiv$ partitions of vertices $V_{1} \cup V_{2} \cup V_{|H|}$ of n vertices. We add an (ε, p) regular pair with m edges for each edge of H.
D: A canonical copy of $H \equiv$ a copy of H in a member of $\mathcal{G}(H, n, m, p, \varepsilon)$ such that for each $i \in V(G), f(i) \in V_{i}(H)$.
\mathbf{T} (The embedding lemma):For every graph H and every positive d, there exists $\varepsilon>0$ and an integer n_{0} such that $\forall n, m, n \geq n_{0}, m \geq d n^{2}$, every $G \in \mathcal{G}(H, n, m, 1, \varepsilon)$ contains a canonical copy of H.

The problem with embedding lemma: 1 is not p. Can it be salvaged? Not entirely, but maybe only a franction of regularity-type graphs do not satisfy it:
$\mathbf{D}: \mathcal{G}^{*}(H, n, m, p, \varepsilon) \equiv$ a collection of graphs in $\mathcal{G}(H, n, m, p, \varepsilon)$ which do not contain any canonical copy of H.
Q(The KŁR Conjecture):Let H be a fixed graph. Then, for any positive β, there exist positive C, n_{0}, ε such that $\forall n, m, n \geq n_{0}, m \geq$ $\frac{C n^{2}}{n^{1 / m_{2}(H)}}$:

$$
\left|\mathcal{G}^{*}\left(H, n, m, m / n^{2}, \varepsilon\right)\right| \leq \beta^{m}\binom{n^{2}}{m} .
$$

KŁR proven for small complete graphs, cycles. One of the main results is:
\mathbf{T} (KŁR for 2-balanced graphs):For H being 2-balanced, KŁR conjecture holds.

Proving KER for 2-balanced graphs

$\mathbf{D}: \mathcal{G}\left(H, n_{1}, n_{2}, \ldots, n_{|H|}\right) \equiv$ similar to $\mathcal{G}(H, n, m, p, \varepsilon)$, only edges are complete bipartite graphs and sizes of partitions are variable.
L (Variant of the embedding lemma): Let H be a graph, $\delta:(0,1] \rightarrow$ $(0,1)$ function. There exist positive constants α_{0}, ξ, N such that for every collection of integers $n_{1}, n_{2}, \ldots, n_{|H|}$, and every graph $G \in$ $\mathcal{G}\left(H ; n_{1}, n_{2}, \ldots, n_{|H|}\right)$, one of the following holds:

- G contains at least $\xi n_{1} n_{2} \cdots n_{|H|}$ canonical copies of H,
- There exist a positive constant α with $\alpha \geq \alpha_{0}$, an edge $\{i, j\} \in$ $E(H)$ and sets A_{i}, A_{j} which are of size at least $\alpha n_{i}, \alpha n_{j}$ but:

$$
d_{G}\left(A_{i}, A_{j}\right)<\delta(\alpha)
$$

$\mathcal{L}($ Counting canonical copies with a non-regular pair): For each $\beta \in$ $(0,1)$,set

$$
\delta(x)=\frac{1}{4 e}\left(\frac{\beta}{2}\right)^{2 / x^{2}}
$$

Then, for every positive α_{0}, β, there exists a positive constant ε such that the following holds. Let $G^{\prime} \subseteq K_{n, n}$ be such that there exist subsets A_{1}, A_{2} with $\min \left(\left|A_{1}\right|,\left|A_{2}\right|\right) \geq \alpha n$ and $d_{G}\left(A_{1}, A_{2}\right)<\delta(\alpha)$ for some $\alpha \in\left[\alpha_{0}, 1\right]$.
Then for every m with $0 \leq m \leq n^{2}$, there are at most $\beta^{m}\binom{n^{2}}{m}$ subgraphs of G^{\prime} that belong to $\mathcal{G}\left(K_{2}, n, m, m / n^{2}, \varepsilon\right)$.
\mathbf{C} (Hypergraph of copies satisfies the Scythe): Let n, t be integers with $t \geq 2$ and H be a t-balanced, t-uniform hypergraph. Set $k=\|H\|$ and et \mathcal{H} be the k-uniform hypergraph of copies of H in K_{n}^{l}.
Then there exist positive constants c, c^{\prime} such that, letting

$$
p=\frac{1}{n^{1 / m_{t}(H)}}
$$

the following holds:

- $p^{k-1}| | H| | \geq c^{\prime}|H|$,
- For every $l \in[k-1]$:

$$
\Delta_{l}(\mathcal{H}) \leq c \cdot \min \left(p^{l-k}, \frac{p^{l-1}| | \mathcal{H} \|}{|\mathcal{H}|}\right)
$$

The Scythe

Given a $(i+1)$-uniform hypergraph \mathcal{H}_{i+1} and an independent set $I \in \mathcal{I}\left(\mathcal{H}_{i+1}\right)$ set $\mathcal{A}_{i+1}^{(0)}=\mathcal{H}_{i+1}$ and let $\mathcal{H}_{i}^{(0)}$ be the empty hypergraph on the vertex set $V(\mathcal{H})$. For $j=0 \ldots b-1$, do the following:

- If $I \cap V\left(\mathcal{A}_{i+1}^{(j)}\right)=\emptyset$, set $\mathcal{H}_{i}=\mathcal{H}_{i}^{(0)}, \mathcal{A}_{i}=\emptyset, B_{i}=\left\{u_{0}, \ldots, u_{j-1}\right\}$ and stop.
- Let u_{j} be the first vertex of I in the max-degree order on $V\left(\mathcal{A}_{i+1}^{(j)}\right.$.
- Let \mathcal{H}_{i}^{j+1} be the hypergraph on the vertex set $V(\mathcal{H})$ defined by:
- Let \mathcal{A}_{i+1}^{j+1} be the hypergraph on the vertex set $V\left(\mathcal{A}_{i+1}^{(j)}\right) \backslash u_{1 \ldots j}$ defined by:

Finally, set $\mathcal{H}_{i}=\mathcal{H}_{i}^{(b)}, \mathcal{A}_{i}=V\left(\mathcal{A}_{i+1}^{(b)}\right)$ and $B_{i}=u_{1 \ldots b-1}$.

