COUNTING PLANE GRAPHS: PERFECT MATCHINGS, SPANNING CYCLES, AND KASTELEYN'S TECHNIQUE

MICHA SHARIR, ADAM SHEFFER, EMO WELZL

Presented by: Marek Eliáš
Definition $(\operatorname{sc}(N))$. For a set S of points in the plane, we denote by $\mathcal{C}(S)$ the set of all crossingfree straight-edge spanning cycles of S, and put $\operatorname{sc}(S):=|\mathcal{C}(S)|$. Moreover, we let $\operatorname{sc}(N)=$ $\max _{|S|=N} \operatorname{sc}(S)$.
Definition $(\operatorname{tr}(N))$. For a set S of points in the plane, we denote by $\mathcal{T}(S)$ the set of all triangulations of S, and put $\operatorname{tr}(S):=|\mathcal{T}(S)|$. Moreover, we let $\operatorname{tr}(N)=\max _{|S|=N} \operatorname{tr}(S)$.

Definition.

Hull edges/vertices: those which are part of the boundary of the convex hull of S
Interior edges/vertices: those which are not part of the boundary of $\operatorname{conv}(S)$
h : number of hull vertices
n : number of interior vertices $(n:=N-h)$
Theorem (Already known bounds).
$\operatorname{tr}(N)<30^{N}$
$\operatorname{sc}(N)<30^{N / 4} \cdot \operatorname{tr}(S) \approx 2.3404^{N} \cdot \operatorname{tr}(S)$
$\Rightarrow \mathrm{sc}(N)=O\left(68.664^{N}\right)$
Definition $\left(\mathrm{sc}_{\Delta}(N)\right)$.
$\mathcal{C}(T)$: set of spanning cycles contained in a triangulation T
$\operatorname{sc}_{\Delta}(N):=\max _{|S|=N, T \in \mathcal{T}}|\mathcal{C}(T)|$ i. e. maximal number of plane spanning cycles that can be contained in any fixed triangulation of a set of N points in the plane.
Definition (Support). Given a plane edge graph G embedded over a set S of points in the plane, we say that G has a support of x if G is contained in exactly x triangulations of S; we write $\operatorname{supp}(G)=x$.

$$
\begin{equation*}
\operatorname{sc}(S)=\sum_{T \in \mathbb{T}(S)} \sum_{C \in \mathcal{C}(T)} \frac{1}{\operatorname{supp}(C)} \tag{1}
\end{equation*}
$$

Definition (ps-flippable edge). Given a triangulation T, we say that a subset F of its edges is a set of ps-flippable edges, if F are diagonals of interior-disjoint convex polygons whose boundaries are also parts of T.
Lemma (L2.1). Every triangulation T over a set of N points in the plane contains a set F of $N / 2-2$ ps-flippable edges. Also, there are triangulations with no larger sets of ps-flippable edges.
Lemma (L2.2). Consider a triangulation T, a set F of $N / 2-2$ ps-flippable edges in T, and a graph $G \subseteq T$. If G does not contain j edges from F, then $\operatorname{supp}(G) \geq 2^{j}$.
Definition (Convex decomposition). A conv. decomposition of a point set S is a crossing-free straight-edge graph D on S such that (i) D includes all the hull edges, (ii) each bounded face of D is a convex polygon, (iii) no point of S is isolated in D.
Lemma (L2.3). Let S be a set of points in the plane and let G be a crossing-free straight-edge graph over S that contains all the edges of the convex hull of S. Then G is a convex decomposition of S if and only if every interior vertex of S is valid with respect to G.

Lemma (L2.4). Let $c>1$ be a constant such that every set S of an even number of points in the plane satisfies $\operatorname{sc}(S)=O\left(c^{|S|}\right)$. Then $\operatorname{sc}(S)=O\left(c^{|S|}\right)$ also holds for sets S of an odd number of points.

Definition $(\operatorname{pm}(N))$. For a set S of points in the plane, we denote by $\mathcal{M}(S)$ the set of all perfect matchings of S, and put $\operatorname{pm}(S):=|\mathcal{M}(S)|$. Moreover, we let $\operatorname{pm}(N)=\max _{|S|=N} \operatorname{pm}(S)$. $\mathcal{M}(G)$ is a set of perfect matchings contained in G.

Theorem (T3.1). For any set S of N points in the plane,

$$
\operatorname{sc}(S)=O\left(12^{N / 4}\right) \cdot \operatorname{tr}(S)=O\left(1.8613^{N}\right) \cdot \operatorname{tr}(S)
$$

Theorem (Kasteleyn's enhanced theorem). Every planar graph G can be oriented onto some digraph \vec{G} such that, for any real-valued weight function μ on its edges, we have

$$
\left(\sum_{M \in \mathcal{M}(G)} \mu(M)\right)^{2}=\left|\operatorname{det}\left(B_{\vec{G}, \mu}\right)\right|
$$

Theorem (T4.1). For any set S of N points in the plane,

$$
\operatorname{pm}(S) \leq 8 \cdot(3 / 2)^{N / 4} \cdot \operatorname{tr}(S)=O\left(1.1067^{N}\right) \cdot \operatorname{tr}(S)
$$

Lemma (L5.1). Let T be a triangulation over a set S of $N \geq 6$ points in the plane, such that N is even and S has a triangular convex hull; also, let $v_{3}(T)=t N$ be the number of interior vertices of degree 3 in T. Then

$$
\sum_{C \in \mathcal{C}(T)} \frac{1}{\operatorname{supp}(C)}<8\left(\frac{3}{2^{t}}\left(\frac{(2-t)(2-t / 2)}{(1-t)^{2}}\right)^{1-t}\right)^{N / 4}
$$

Lemma (L5.2). Let $c_{g o n}$ be the maximum real number satisfying the following property: Every simple polygon P that has a triangulation T_{P} with k fippable and with $l \leq k$ of these diagonals forming a ps-flippable set, has at least $2^{l} c_{g o n}^{k-l}$ triangulations. Then $x \leq c_{g o n} \leq 5 / 4$ with $x \approx 1.17965$ the unique real root of the polynomial $1+4 x^{2}-4 x^{3}$.

Lemma (L5.3). Consider a triangulation T with the number of fippable edges $\operatorname{flip}(T)=N / 2-$ $3+\kappa N$, for some $\kappa \geq 0$, and let x be the unique real root of the polynomial $1+4 x^{2}-4 x^{3}$. Then

$$
\sum_{C \in \mathcal{C}(T)} \frac{1}{\operatorname{supp}(C)}<8\left(\frac{\left(3+\left(\gamma^{2}-1\right)(\kappa+1 / 2)\right)\left(4+\left(x^{2}-1\right) \kappa\right)}{x^{4 \kappa}}\right)^{N / 4}
$$

where $\gamma=x \cdot e^{-\frac{x^{2}-1}{4\left(4+\left(x^{2}-1\right) \kappa\right)}}$.
Lemma (L5.4). Let $c>1$ be a constant such that every set S of an even number of points in the plane and a triangular convex hull satisfies $\operatorname{sc}(S)=O\left(c^{|S|}\right)$. Then $\operatorname{sc}(S)=O\left(c^{|S|}\right)$ also holds for every other finite point-set S in the plane.

Theorem (T5.5). For any set S of N points in the plane,

$$
\operatorname{sc}(S)=O\left(10.9247^{N / 4}\right) \cdot \operatorname{tr}(S)=O\left(1.8181^{N}\right) \cdot \operatorname{tr}(S)
$$

Corollary (C5.6). $\operatorname{sc}(N)=O\left(54.5430^{N}\right)$.

