Convex equipartitions: The spicy chicken theorem

Roman Karasev, Alfredo Hubard, Boris Aronov

Presented by Zuzana Safernová

Conjecture 1. (Nandakumar and Ramana Rao) Can a convex body in the plane be partitioned into n convex regions with equal areas and equal perimeters?
Corollary 2. Given a convex body K in \mathbb{R}^{d}, and a prime power n, it is possible to partition K into n convex bodies with equal d-dim volumes and equal ($d-1$)-dim surface areas.

- Absolutely continuous (a.c.) measure $\mu: \lambda(A)=0 \Rightarrow \mu(A)=0$
- \mathcal{K}^{d} - space of convex sets in \mathbb{R}^{d} with Hausdorff metric

Theorem 3. Given an a.c. finite measure μ on \mathbb{R}^{d}, a convex body $K \in \mathcal{K}^{d}$, a family of $d-1$ continuous functionals $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{d-1}: \mathcal{K}^{d} \rightarrow \mathbb{R}$, and a prime power n, there is a partition of K into n convex bodies $K_{1}, K_{2}, \ldots, K_{n}$, such that $\mu\left(K_{i}\right)=\frac{\mu(K)}{n}$ and $\varphi_{j}\left(K_{1}\right)=\varphi_{j}\left(K_{2}\right)=\cdots=\varphi_{j}\left(K_{n}\right)$, for all $1 \leq i \leq n$ and $1 \leq j \leq d-1$.
Corollary 4. Given d a.c. probability measures μ_{1}, \ldots, μ_{d} on R^{d}, and any number n, there is a partition of \mathbb{R}^{d} into convex regions K_{1}, \ldots, K_{n} with $\mu_{i}\left(K_{j}\right)=\frac{1}{n}$ for all i, j simultaneously.
Theorem 5. Suppose $K \in \mathcal{K}^{d}$ is a convex body, and, for some $1 \leq m \leq d$, we have m a.c. finite measures μ_{1}, \ldots, μ_{m} on K, and $d-m$ a.c. finite measures $\sigma_{1}, \ldots, \sigma_{d-m}$ on ∂K. Then, for any n, the body K can be partitioned into n convex parts K_{1}, \ldots, K_{n}, such that,

- for any $i=1, \ldots, m$ we have $\mu_{i}\left(K_{1}\right)=\cdots=\mu_{i}\left(K_{n}\right)$, and
- for every $i=1, \ldots, d-m$ we have $\sigma_{i}\left(K_{1} \cap \partial K\right)=\cdots=\sigma_{i}\left(K_{n} \cap \partial K\right)$.

Theorem 6. Given a convex body $K \in \mathcal{K}^{d}$, an a.c. finite measure μ on K, a prime power n, a continuous map $g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d-1}$, and a continuous centermap $c: \mathcal{K}^{d} \rightarrow \mathbb{R}^{d}$, then there exists a partition of K into n convex sets K_{1}, \ldots, K_{n}, such that $\mu\left(K_{i}\right)=\frac{\mu(K)}{n}$, for all i, and $g\left(c\left(K_{1}\right)\right)=\cdots=g\left(c\left(K_{n}\right)\right)$.

- Configuration space $F_{n}\left(\mathbb{R}^{d}\right):=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n d}: x_{i} \neq x_{j}\right.$ for all $\left.i \neq j\right\}$
- Symmetric group Σ_{n} acts on $F_{n}\left(\mathbb{R}^{d}\right)$ by permuting the points in a tuple and on \mathbb{R}^{n} by permuting the coordinate axes.
- Denote by α_{n} the orthogonal complement of the diagonal. Restrict the action of Σ_{n} on \mathbb{R}_{n} to the action on α_{n}.
- A map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, n \geq m$, is Σ_{n}-equivariant if $f \circ \pi=\pi \circ f$, for $\pi \in \Sigma_{n}$.

Theorem 7. (Fuchs, Vasiliev, Karasev) Let n be a prime power. For any Σ_{n}-equivariant continuous $\operatorname{map} f: F_{n}\left(\mathbb{R}^{d}\right) \rightarrow \alpha_{n}^{\oplus(d-1)}$, there exists a configuration $\bar{x} \in F_{n}\left(\mathbb{R}^{d}\right)$, such that $f(\bar{x})=0$.

- X - a compact top. space with a Borel probabilistic measure μ $\mathcal{C}(X)$ - a set of real-valued continuous functions on X
- A fin. dim. linear subspace $L \subset \mathcal{C}(X)$ is measure separating (m.s.) if, for any $f \neq g \in L$, the measure of the set $e(f, g)=\{x \in X: f(x)=g(x)\}$ is zero.
- Let $F=\left\{u_{1}, \ldots, u_{n}\right\} \subset \mathcal{C}(X)$ and $\mu\left(e\left(u_{i}, u_{j}\right)\right)=0$. The sets $V_{i}=\left\{x \in X: \forall j \neq i, u_{i}(x) \leq u_{j}(x)\right\}$ define a partition $P(F)$ of X.

Theorem 8. Suppose L is a m.s. subspace of $\mathcal{C}(X)$ of dimension $d+1, \mu_{1}, \ldots, \mu_{d}$ are a.c. probability measures on X. Then, for any prime power n, there exists a subset $F \subset L,|F|=n$ such that, for every $i=1, \ldots, d$, the family $P(F)$ partitions the measure μ_{i} into n equal parts.

