Constructive Discrepancy Minimization by Walking on The Edges

by Shachar Lovett and Raghu Meka

presented by Martin Balko

The authors introduce a new randomized algorithm which finds a coloring which achieves discrepancy $C \sqrt{n}$. The algorithm and its analysis use only basic linear algebra and is "truly"constructive in that it does not appeal to the existential arguments, giving a new proof of the partial coloring lemma.

Definitions:

- We are given a collection of m sets \mathcal{S} from a universe $V=\{1, \ldots, n\}$. Let no element from V be in more than t sets of \mathcal{S}.
- The goal is to find a coloring $\chi: V \rightarrow\{-1,1\}$ that minimizes the maximum discrepancy $\chi(\mathcal{S})=$ $\max _{S \in \mathcal{S}}\left|\sum_{i \in S} \chi(i)\right|$. The minimum discrepancy of \mathcal{S} is denoted as $\operatorname{disc}(\mathcal{S})=\min _{\chi} \chi(\mathcal{S})$.

Known:

- A random coloring has discrepancy $O(\sqrt{n \log m})$.
- For t bounded $\operatorname{disc}(\mathcal{S})<2 t$ holds [Beck and Fiala, 1981] and $\operatorname{disc}(\mathcal{S})=O(\sqrt{t})$ is conjectured.
- For t bounded $\operatorname{disc}(\mathcal{S})=O(\sqrt{t \cdot \log n})$ holds [Banaszczsyk, 1998], non-constructively.

Theorem 1 (Standard deviation result, Spencer 1985). For any set system (V, \mathcal{S}) with $|V|=n$, $|\mathcal{S}|=m$, there exists a coloring $\chi: V \rightarrow\{-1,1\}$ such that $\chi(\mathcal{S})<K \sqrt{n \cdot \log _{2}(m / n)}$, where K is a universal constant (K can be six if $m=n$).

- Spencer's original proof was non-constructive. A longstanding problem: is there an efficient way to find a good coloring as in Theorem 1
- Bansal gave the first randomized polynomial time algorithm to find coloring with discrepancy $O(\sqrt{n}$. $\log (m / n))$ [Bansal, 2010].

The results:

- A new algorithm which gives a new constructive proof of Spencer's original result.

Theorem 2. For any set system (V, S) with $|V|=n,|\mathcal{S}|=m$, there exists a randomized algorithm in running time $\tilde{O}\left((n+m)^{3}\right)$ that with probability at least $1 / 2$ computes a coloring $\chi: V \rightarrow\{-1,1\}$ such that $\chi(\mathcal{S})<K \sqrt{n \cdot \log _{2}(m / n)}$, where K is a universal constant.

- A similar constructive result for minimizing discrepancy in the "Beck-Fiala setting" where each variable is constrained to occur in a bounded number of sets.
Theorem 3. Let (V, S) be a set-system with $|V|=n,|\mathcal{S}|=m$ and each element of V contained in at most t sets from \mathcal{S}. Then, there exists a randomized algorithm in running time $\tilde{O}\left((n+m)^{5}\right)$ that with probability at least $1 / 2$ computes a coloring $\chi: V \rightarrow\{-1,1\}$ such that $\chi(\mathcal{S})<K \sqrt{t} \cdot \log n$, where K is a universal constant.

Outline of the Edge-Walk Algorithm:

- A partial coloring $\chi: V \rightarrow[-1,1]$ such that for all $S \in \mathcal{S},|\chi(S)|=O(\sqrt{n \log (m / n)})$ and $\mid\{i:|\chi(i)|=$ $1\} \mid \geq c n$ for a fixed constant $c>0$.
Theorem 4 (Main Partial Coloring Lemma). Let $v_{1}, \ldots, v_{m} \in \mathbb{R}^{n}$ be vectors, and $x_{0} \in[-1,1]^{n}$ be a "starting point". Let $c_{1}, \ldots, c_{m} \geq 0$ be tresholds such that $\sum_{j=1}^{m} \exp \left(-c_{j}^{2} / 16\right) \leq n / 16$. Let $\delta>0$ be a small approximation parameter. then there exists an efficient randomized algorithm which with probability at least 0.1 finds a point $x \in[-1,1]^{n}$ such that $\left|\left\langle x-x_{0}, v_{j}\right\rangle\right| \leq c_{j}\left\|v_{j}\right\|_{2}$ and $\left|x_{i}\right| \geq 1-\delta$ for at least $n / 2$ indices $i \in[n]$. Moreover, the algorithm runs in time $O\left((m+n)^{3} \cdot \delta^{-2} \cdot \log (n m / \delta)\right)$.
- Theorem 4 implies Theorem 2 and Theorem 3 .
- A polytope $\mathcal{P}=\left\{x \in \mathbb{R}^{n}:\left|x_{i}\right| \leq 1 \forall i \in[n],\left|\left\langle x-x_{0}, v_{j}\right\rangle\right| \leq c_{j} \forall j \in[m]\right\}$ defined by variable constraints $\left|x_{i}\right| \leq 1$ and discrepancy constraints $\left|\left\langle x-x_{0}, v_{j}\right\rangle\right| \leq c_{j}$.

Preliminaries for the proof of Theorem 4;

- Let $\mathcal{N}\left(\mu, \sigma^{2}\right)$ denote the Gaussian distribution with mean μ and variance σ^{2}. For $\mu=0$ and $\sigma^{2}=1$ we call it standard.
- For a linear subspace $V \subseteq \mathbb{R}^{n}$ we denote by $G \sim \mathcal{N}(V)$ the standard multi-dimensional Gaussian distribution supported on $V: G=G_{1} v_{1}+\cdots+G_{d} v_{d}$ where $\left\{v_{1}, \ldots, v_{d}\right\}$ is an orthonormal basis for V and $G_{1}, \ldots, G_{d} \sim \mathcal{N}(0,1)$.

Claim 7. Let $V \subseteq \mathbb{R}^{n}$ be a linear subspace and let $G \sim \mathcal{N}(V)$. Then, for all $u \in \mathbb{R}^{n},\langle G, u\rangle \sim \mathcal{N}\left(0, \sigma^{2}\right)$, where $\sigma^{2} \leq\|u\|_{2}^{2}$.
Claim 8. Let $V \subseteq \mathbb{R}^{n}$ be a linear subspace and let $G \sim \mathcal{N}(V)$. Let $\left\langle G, e_{i}\right\rangle \sim \mathcal{N}\left(0, \sigma_{i}^{2}\right)$. Then $\sum_{i=1}^{n} \sigma_{i}^{2}=$ $\operatorname{dim}(V)$.

Claim 9. Let $G \sim \mathcal{N}(0,1)$. Then, for any $\lambda>0, \operatorname{Pr}[|G| \geq \lambda] \leq 2 \exp \left(-\lambda^{2} / 2\right)$.
Lemma 10 (Bansal, 2010). Let X_{1}, \ldots, X_{T} be random variables. Let Y_{1}, \ldots, Y_{T} be random variables where each Y_{i} is a function of X_{i}. Suppose that for all $1 \leq t \leq T, x_{1}, \ldots, x_{i-1} \in \mathbb{R}, Y_{i} \mid\left(X_{1}=\right.$ $x_{1}, \ldots, X_{i-1}=x_{i-1}$) is Gaussian with mean zero and variance at most one (possibly different for each setting of $\left.x_{1}, \ldots, x_{i-1}\right)$. Then for any $\lambda>0, \operatorname{Pr}\left[\left|Y_{1}+\cdots+Y_{T}\right| \geq \lambda \sqrt{T}\right] \leq 2 \exp \left(-\lambda^{2} / 2\right)$.

Proof of Theorem 4;

- In each step $t, 1 \leq t \leq T$, set

$$
\begin{aligned}
& \mathcal{C}_{t}^{\text {var }}=\left\{i \in[n]:\left(X_{t-1}\right)_{i} \geq 1-\delta\right\} \\
& \mathcal{C}_{t}^{\text {disc }}=\left\{j \in[m]:\left|\left\langle X_{t-1}-x_{0}, v_{j}\right\rangle\right| \geq c_{j}-\delta\right\} \\
& \mathcal{V}_{t}=\left\{u \in \mathbb{R}^{n}: u_{i}=0 \forall i \in \mathcal{C}_{t}^{\text {var }},\left\langle u, v_{j}\right\rangle=0 \forall j \in \mathcal{C}_{t}^{\text {disc }}\right\}
\end{aligned}
$$

- A crucial lemma:

Lemma 11. Assume that $\sum_{j=1}^{m} \exp \left(-c_{j}^{2} / 16\right) \leq n / 16$. Then in our random walk with probability at least 0.1 we have $X_{0}, \ldots, X_{T} \in \mathcal{P}$ and $\left|\left(X_{T}\right)_{i}\right| \geq 1-\delta$ for at least $n / 2$ indices $i \in[n]$.

- Auxiliary results:

Claim 12. For all $t<T$ we have $\mathcal{C}_{t}^{\text {var }} \subseteq \mathcal{C}_{t+1}^{\text {var }}$ and $\mathcal{C}_{t}^{\text {disc }} \subseteq \mathcal{C}_{t+1}^{\text {disc }}$. In particular, for $1 \leq t \leq T$, $\operatorname{dim}\left(\mathcal{V}_{t}\right) \geq \operatorname{dim}\left(\mathcal{V}_{t+1}\right)$.
Claim 13. For $\gamma \leq \delta / \sqrt{C \log (m n / \gamma)}$ and C sufficiently large constant, with probability at least 1 $1 /(m n)^{C-2}, X_{0}, \ldots, X_{T} \in \mathcal{P}$.

Claim 14. $\mathbb{E}\left[\left|\mathcal{C}_{T}^{\text {disc }}\right|\right]<n / 4$.
Claim 15. $\mathbb{E}\left[\left\|X_{T}\right\|_{2}^{2}\right] \leq n$.
Claim 16. $\mathbb{E}\left[\left|\mathcal{C}_{T}^{v a r}\right|\right] \geq 0.56 n$.

