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The authors introduce a new randomized algorithm which finds a coloring which achieves discrepancy
C
√
n. The algorithm and its analysis use only basic linear algebra and is ”truly”constructive in that it does

not appeal to the existential arguments, giving a new proof of the partial coloring lemma.

Definitions:

• We are given a collection of m sets S from a universe V = {1, . . . , n}. Let no element from V be in
more than t sets of S.

• The goal is to find a coloring χ : V → {−1, 1} that minimizes the maximum discrepancy χ(S) =
maxS∈S

∣∣∑
i∈S χ(i)

∣∣. The minimum discrepancy of S is denoted as disc(S) = minχ χ(S).

Known:

• A random coloring has discrepancy O(
√
n logm).

• For t bounded disc(S) < 2t holds [Beck and Fiala, 1981] and disc(S) = O(
√
t) is conjectured.

• For t bounded disc(S) = O(
√
t · log n) holds [Banaszczsyk, 1998], non-constructively.

Theorem 1 (Standard deviation result, Spencer 1985). For any set system (V,S) with |V | = n,
|S| = m, there exists a coloring χ : V → {−1, 1} such that χ(S) < K

√
n · log2(m/n), where K is a

universal constant (K can be six if m = n).

• Spencer‘s original proof was non-constructive. A longstanding problem: is there an efficient way to find
a good coloring as in Theorem 1?

• Bansal gave the first randomized polynomial time algorithm to find coloring with discrepancy O(
√
n ·

log(m/n)) [Bansal, 2010].

The results:

• A new algorithm which gives a new constructive proof of Spencer‘s original result.

Theorem 2. For any set system (V, S) with |V | = n, |S| = m, there exists a randomized algorithm in
running time Õ((n+m)3) that with probability at least 1/2 computes a coloring χ : V → {−1, 1} such
that χ(S) < K

√
n · log2(m/n), where K is a universal constant.

• A similar constructive result for minimizing discrepancy in the ”Beck-Fiala setting”where each variable
is constrained to occur in a bounded number of sets.

Theorem 3. Let (V, S) be a set-system with |V | = n, |S| = m and each element of V contained in at
most t sets from S. Then, there exists a randomized algorithm in running time Õ((n+m)5) that with
probability at least 1/2 computes a coloring χ : V → {−1, 1} such that χ(S) < K

√
t · log n, where K is

a universal constant.

Outline of the Edge-Walk Algorithm:

• A partial coloring χ : V → [−1, 1] such that for all S ∈ S, |χ(S)| = O(
√
n log(m/n)) and |{i : |χ(i)| =

1}| ≥ cn for a fixed constant c > 0.

Theorem 4 (Main Partial Coloring Lemma). Let v1, . . . , vm ∈ Rn be vectors, and x0 ∈ [−1, 1]n be
a ”starting point”. Let c1, . . . , cm ≥ 0 be tresholds such that

∑m
j=1 exp (−c2j/16) ≤ n/16. Let δ > 0

be a small approximation parameter. then there exists an efficient randomized algorithm which with
probability at least 0.1 finds a point x ∈ [−1, 1]n such that |〈x− x0, vj〉| ≤ cj‖vj‖2 and |xi| ≥ 1− δ for
at least n/2 indices i ∈ [n]. Moreover, the algorithm runs in time O((m+ n)3 · δ−2 · log(nm/δ)).

• Theorem 4 implies Theorem 2 and Theorem 3.

• A polytope P = {x ∈ Rn : |xi| ≤ 1 ∀i ∈ [n], |〈x−x0, vj〉| ≤ cj ∀j ∈ [m]} defined by variable constraints
|xi| ≤ 1 and discrepancy constraints |〈x− x0, vj〉| ≤ cj .
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Preliminaries for the proof of Theorem 4:

• Let N (µ, σ2) denote the Gaussian distribution with mean µ and variance σ2. For µ = 0 and σ2 = 1 we
call it standard.

• For a linear subspace V ⊆ Rn we denote by G ∼ N (V ) the standard multi-dimensional Gaussian
distribution supported on V : G = G1v1 + · · ·+Gdvd where {v1, . . . , vd} is an orthonormal basis for V
and G1, . . . , Gd ∼ N (0, 1).

Claim 7. Let V ⊆ Rn be a linear subspace and let G ∼ N (V ). Then, for all u ∈ Rn, 〈G, u〉 ∼ N (0, σ2),
where σ2 ≤ ‖u‖22.

Claim 8. Let V ⊆ Rn be a linear subspace and let G ∼ N (V ). Let 〈G, ei〉 ∼ N (0, σ2
i ). Then

∑n
i=1 σ

2
i =

dim(V ).

Claim 9. Let G ∼ N (0, 1). Then, for any λ > 0, Pr[|G| ≥ λ] ≤ 2 exp (−λ2/2).

Lemma 10 (Bansal, 2010). Let X1, . . . , XT be random variables. Let Y1, . . . , YT be random variables
where each Yi is a function of Xi. Suppose that for all 1 ≤ t ≤ T , x1, . . . , xi−1 ∈ R, Yi | (X1 =
x1, . . . , Xi−1 = xi−1) is Gaussian with mean zero and variance at most one (possibly different for each
setting of x1, . . . , xi−1). Then for any λ > 0, Pr[|Y1 + · · ·+ YT | ≥ λ

√
T ] ≤ 2 exp (−λ2/2).

Proof of Theorem 4:

• In each step t, 1 ≤ t ≤ T , set

Cvart = {i ∈ [n] : (Xt−1)i ≥ 1− δ},
Cdisct = {j ∈ [m] : |〈Xt−1 − x0, vj〉| ≥ cj − δ},
Vt = {u ∈ Rn : ui = 0 ∀i ∈ Cvart , 〈u, vj〉 = 0 ∀j ∈ Cdisct }.

• A crucial lemma:

Lemma 11. Assume that
∑m
j=1 exp (−c2j/16) ≤ n/16. Then in our random walk with probability at

least 0.1 we have X0, . . . , XT ∈ P and |(XT )i| ≥ 1− δ for at least n/2 indices i ∈ [n].

• Auxiliary results:

Claim 12. For all t < T we have Cvart ⊆ Cvart+1 and Cdisct ⊆ Cdisct+1 . In particular, for 1 ≤ t ≤ T ,
dim(Vt) ≥ dim(Vt+1).

Claim 13. For γ ≤ δ/
√
C log(mn/γ) and C sufficiently large constant, with probability at least 1 −

1/(mn)C−2, X0, . . . , XT ∈ P.

Claim 14. E[|CdiscT |] < n/4.

Claim 15. E[‖XT ‖22] ≤ n.

Claim 16. E[|CvarT |] ≥ 0.56n.
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